• Title/Summary/Keyword: Engineering, and physical parameters

Search Result 1,068, Processing Time 0.029 seconds

Thermal Analysis of High Density Permanent Magnet Synchronous Motor Based on Multi Physical Domain Coupling Simulation

  • Chen, ShiJun;Zhang, Qi;He, Biao;Huang, SuRong;Hui, Dou-Dou
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.91-99
    • /
    • 2017
  • In order to meet the thermal performance analysis accuracy requirements of high density permanent magnet synchronous motor (PMSM), a method of multi physical domain coupling thermal analysis based on control circuit, electromagnetic and thermal is presented. The circuit, electromagnetic, fluid, temperature and other physical domain are integrated and the temperature rise calculation method that considers the harmonic loss on the frequency conversion control as well as the loss non-uniformly distributed and directly mapped to the temperature field is closer to the actual situation. The key is to obtain the motor parameters, the realization of the vector control circuit and the accurate calculation and mapping of the loss. Taking a 48 slots 8 poles high density PMSM as an example, the temperature rise distribution of the key components is simulated, and the experimental platform is built. The temperature of the key components of the prototype machine is tested, which is in agreement with the simulation results. The validity and accuracy of the multi physical domain coupling thermal analysis method are verified.

Dynamic response analysis of closed loop control system for intelligent truss structures based on probability

  • Gao, W.;Chen, J.J.;Ma, H.B.;Ma, X.S.;Cui, M.T.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.2
    • /
    • pp.239-248
    • /
    • 2003
  • The dynamic response analysis of closed loop control system based on probability for the intelligent truss structures with random parameters is presented. The expressions of numerical characteristics of structural dynamic response of closed loop control system are derived by means of the mode superposition method, in which the randomness of physical parameters of structural materials, geometric dimensions of active bars and passive bars, applied loads and control forces are considered simultaneously. The influences of the randomness of them on structural dynamic response are inspected by several engineering examples and some significant conclusions are obtained.

Design of Robust PI Controller for Vehicle Suspension System

  • Yeroglu, Celaleddin;Tan, Nusret
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.135-142
    • /
    • 2008
  • This paper deals with the design of a robust PI controller for a vehicle suspension system. A method, which is related to computation of all stabilizing PI controllers, is applied to the vehicle suspension system in order to obtain optimum control between passenger comfort and driving performance. The PI controller parameters are calculated by plotting the stability boundary locus in the $(k_p,\;k_i)$-plane and illustrative results are presented. In reality, like all physical systems, the vehicle suspension system parameters contain uncertainty. Thus, the proposed method is also used to compute all the parameters of a PI controller that stabilize a vehicle suspension system with uncertain parameters.

Optimal Design of Arrayed Waveguide Grating

  • Jung, Jae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.99-103
    • /
    • 2004
  • This paper describes the optimal design of an AWG spectrum to meet various specifications and improve some physical parameters. The objective function is the norm of the difference between design parameters and target values. To obtain the design parameters, the Fourier model is employed and the design variables arc spacing of array waveguide, width of array waveguide, optical path difference, and focal length. The (1+1) Evolution Strategy is employed as the optimization tool. The optimization procedure is applied to a 16-channel AWG and the optimized design variables will considerably improve the system performance.

Development of Simulator and Robotic Door for Parametric Design Optimization of Washing Machine Door Motion (세탁기 도어 거동 인자 설계 최적화를 위한 시뮬레이터 및 로봇형 도어 장치 개발)

  • Yi, June-Sup;Jung, Byung-Jin;Moon, Hyungpil
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.1
    • /
    • pp.19-25
    • /
    • 2017
  • A design methodology for parametric design optimization of washing machine door is presented. We develop a motion simulator and a robotic door to simulate the various motion of washing machine doors. The motion of the washing machine door is related to hinge parameters. Springs and dampers are usually used in the hinge of washing machine door for controlling motion of the door. A physical simulator of the door motion is used for finding candidate parameters of the hinge and a robotic door whose motion is controlled algorithmically is used for consumer tests. Through the consumer evaluation on the robotic motion, the optimized parameters are determined. We find the optimal parameters as a function of angle and angular velocity of the door.

A Study on the Modal Parameters of the scaled building structure (축소 건물모델의 모달 파라미터 추정에 관한 연구)

  • Park, Hae-Dong;Park, Jin-Il;Choi, Hyun;Kim, Doo-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.571-575
    • /
    • 2000
  • The physical properties of the spatial model, mass, stiffness and damping matrix, can be defined by a specific natural frequency, damping ratio and mode shape. These modal parameters can be determined from a set of frequency response function(FRF) measured by exciting the structure and measuring the responses at various points around the structure. In this paper, The Transfer Matrix is obtained by experimental modal analysis for the 3-story scaled building model which TMD is installed on top and the physical properties of the spatial model is determined using the residue matrix and the location of poles from FRF measurement using polynomial curve fitting methods.

  • PDF

An Experimental Study on the Acoustical Characteristics in the Main Hall of Catholic Church (성당본당의 실내음향 특성에 관한 실험적 연구)

  • Shin, Young-Jin;Park, Hyeon-Ku;Choi, Hyung-Wook;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.468-473
    • /
    • 2000
  • Recently the acoustic design has been considered the important part of architectural design. However, in the design of Catholic churches the exterior beauty is still main point. This study aims to find out the acoustical characteristics in the main hall of Catholic churches. Six catholic churches were selected for this experiment and the physical parameters which represent the acoustic characteristics of room were compared by the plan type and the architectural factor. The physical parameters compared and analyzed were SD(Stand deviation) of SPL(sound pressure level), RT(reverberation time), $D_{50}$(definition), $C_{80}$(clarity) and STI(speech transmission index).

  • PDF

Steel nitriding optimization through multi-objective and FEM analysis

  • Cavaliere, Pasquale;Perrone, Angelo;Silvello, Alessio
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.71-90
    • /
    • 2016
  • Steel nitriding is a thermo-chemical process leading to surface hardening and improvement in fatigue properties. The process is strongly influenced by many different variables such as steel composition, nitrogen potential, temperature, time, and quenching media. In the present study, the influence of such parameters affecting physic-chemical and mechanical properties of nitride steels was evaluated. The aim was to streamline the process by numerical-experimental analysis allowing defining the optimal conditions for the success of the process. Input parameters-output results correlations were calculated through the employment of a multi-objective optimization software, modeFRONTIER (Esteco). The mechanical and microstructural results belonging to the nitriding process, performed with different processing conditions for various steels, are presented. The data were employed to obtain the analytical equations describing nitriding behavior as a function of nitriding parameters and steel composition. The obtained model was validated, through control designs, and optimized by taking into account physical and processing conditions.

Stationary random response analysis of linear fuzzy truss

  • Ma, J.;Chen, J.J.;Gao, W.;Zhao, Y.Y.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.4
    • /
    • pp.469-481
    • /
    • 2006
  • A new method called fuzzy factor method for the stationary stochastic response analysis of fuzzy truss with global fuzzy structural parameters is presented in this paper. Considering the fuzziness of the structural physical parameters and geometric dimensions simultaneously, the fuzzy correlation function matrix of structural displacement response in time domain is derived by using the fuzzy factor method and the optimization method, the fuzzy mean square values of the structural displacement and stress response in the frequency domain are then developed with the fuzzy factor method. The influences of the fuzziness of structural parameters on the fuzziness of mean square values of the displacement and stress response are inspected via an example and some important conclusions are obtained. Finally, the example is simulated by Monte-Carlo method and the results of the two methods are close, which verified the feasibility of the method given in this paper.

Influence of thermo-physical properties on solutal convection by physical vapor transport of Hg2Cl2-N2 system: Part I - solutal convection

  • Kim, Geug-Tae;Kim, Young-Joo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.3
    • /
    • pp.125-132
    • /
    • 2010
  • For typical governing dimensionless parameters of Ar = 5, Pr = 1.16, Le = 0.14, Pe = 3.57, Cv = 1.02, $Gr_s=2.65{\times}10^6$, the effects of thermo physical properties such as a molecular weight, a binary diffusivity coefficient, a partial pressure of component B on solutally buoyancy-driven convection (solutal Grashof number $Gr_s=2.65{\times}10^6$) are theoretically investigated for further understanding and insight into an essence of solutal convection occurring in the vapor phase during the physical vapor transport of a $Hg_2Cl_2-N_2$ system. The solutally buoyancy-driven convection is significantly affected by any significant disparity in the molecular weight of the crystal components and the impurity gas of nitrogen. The solutal convection in a vertical orientation is found to be more suppressed than a tenth reduction of gravitational accelerations in a horizontal orientation. For crystal growth parameters under consideration, the greater uniformity in the growth rate is obtained for either solutal convection mode in a vertical orientation or thermal convection mode in horizontal geometry. The growth rate is also found to be first order exponentially decayed for $10{\leq}P_B{\leq}200$ Torr.