• Title/Summary/Keyword: Engineering, and physical parameters

Search Result 1,068, Processing Time 0.029 seconds

Vibration analysis of double-bonded sandwich microplates with nanocomposite facesheets reinforced by symmetric and un-symmetric distributions of nanotubes under multi physical fields

  • Mohammadimehr, Mehdi;Zarei, Hassan BabaAkbar;Parakandeh, Ali;Arani, Ali Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.361-379
    • /
    • 2017
  • In this article, the vibration behavior of double-bonded sandwich microplates with homogeneous core and nanocomposite facesheets reinforced by carbon nanotube and boron nitride nanotube under multi physical fields such as 2D magnetic and electric fields is investigated. Symmetric and un-symmetric distributions of nanotubes are considered for facesheets of sandwich microplates such as uniform distribution and various functionally graded distributions. The double-bonded sandwich microplates rest on visco-Pasternak foundation. Material properties of sandwich microplates are obtained by the extended rule of mixture. The sinusoidal shear deformation theory (SSDT) is employed to describe displacement fields of sandwich microplates. Also, the dimensionless natural frequency is obtained by classical plate theory (CPT) and compared with the obtained results by SSDT. It can be seen that the obtained dimensionless natural frequencies by CPT are higher than SSDT. In order to study the material length scale parameters, modified strain gradient theory at micro scale is utilized and then, the equations of motion are derived using Hamilton's principle. The effects of different parameters such as foundation parameters including Winkler, shear layer and damping coefficients, various distributions and volume fraction of nanotubes, core to facesheet thickness ratio, aspect and side ratios on the dimensionless natural frequencies are discussed in details. The results of present work can be used to optimum design and control of similar systems such as micro-electro-mechanical and nano-electro-mechanical devices.

Settlement of velocity dissemination with fluid parameters for the configuration of stretching cylinder

  • Jalil, Mudassar;Iqbal, Waheed;Hussain, Muzamal;Khadimallah, Mohamed A.;Alshoaibi, Adil;Baili, Jamel;Khedher, Khaled Mohamed;Ali, Elimam Abdallah;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.389-396
    • /
    • 2022
  • This investigation in fluid mechanics surrounds around the variety of flow problems for different fluids along the stretching cylinder. Numerical procedure is carried out for the obtained resultant equations by Keller-Box technique. Numerical study of laminar, steady, viscous and incompressible two dimensional boundary layer flow of effects of suction and blowing on boundary layer slip flow of Casson fluid along permeable exponentially stretching cylinder has been carried out in the present draft. physical parameters i.e., Nusselt number and skin friction coefficient, suction parameter and the local Reynold number are investigated on velocity profile and elaborated through proper graphs and table.

Application of Taguchi method in optimization of process parameters of ODS tungsten heavy alloys

  • Sayed, Mohamed A.;Dawood, Osama M.;Elsayed, Ayman H.;Daoush, Walid R.
    • Advances in materials Research
    • /
    • v.6 no.1
    • /
    • pp.79-91
    • /
    • 2017
  • In the present work, a design of experiment (DOE) technique using Taguchi method, has been applied to optimize the properties of ODS tungsten heavy alloys(WHAs). In this work Taguchi method involves nine experiments groups for four processing parameters (compaction pressure, sintering temperature, binding material type, and oxide type) with three levels was implemented. The signal-to-noise (S/N) ratio and analysis of variance (ANOVA) were employed to obtain the optimal process parameter levels and to analyze the effect of these parameters on density, electrical conductivity, hardness and compressive strength values. The results showed that all the chosen factors have significant effects on all properties of ODS tungsten heavy alloys samples. The density, electrical conductivity and hardness increases with the increase in sintering temperature. The analysis of the verification experiments for the physical properties (density and Electrical conductivity) has shown that Taguchi parameter design can successfully verify the optimal parameters, where the difference between the predicted and the verified values of relative density and electrical conductivity is about 1.01% and 1.15% respectively.

Comparative Study on Sedimentation and Soil Characteristic of Dredged Marine Clays at Coastal Areas (해안지역별 준설점토의 침강 및 토질특성)

  • Lee, Kwang-Yeol;Hwang, Jae-Hong;Jang, Sam-Sik;Gu, Tae-Gon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.922-929
    • /
    • 2004
  • In some port construction, a case of reclamation with dredged soil for land use can be found. Even though this is not a new technology, there are some problems on the test method and analysis. The design parameters are still remained to be solved to get accurate prediction. Sedimentation of particle and self-weight consolidation are the most important design parameters in reclamation by dredged soils. The design parameters are influenced by properties of the physical and sedimentation of dredged soils. This influencing factors can be determined depend on the history of long term sedimentation and particle characteristics. Thus, properties of the sedimentation and consolidation are varies depend on the regional geologic formation. In this paper, three different sites with different regional soil properties will be compared in design parameters of sedimentation and self-weight consolidation.

  • PDF

Analysis of Tunnelling Rate Effect on Single Electron Transistor

  • Sheela, L.;Balamurugan, N.B.;Sudha, S.;Jasmine, J.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1670-1676
    • /
    • 2014
  • This paper presents the modeling of Single Electron Transistor (SET) based on Physical model of a device and its equivalent circuit. The physical model is derived from Schrodinger equation. The wave function of the electrode is calculated using Hartree-Fock method and the quantum dot calculation is obtained from WKB approximation. The resulting wave functions are used to compute tunneling rates. From the tunneling rate the current is calculated. The equivalent circuit model discuss about the effect of capacitance on tunneling probability and free energy change. The parameters of equivalent circuit are extracted and optimized using genetic algorithm. The effect of tunneling probability, temperature variation effect on tunneling rate, coulomb blockade effect and current voltage characteristics are discussed.

On-chip Inductor Modeling in Digital CMOS technology and Dual Band RF Receiver Design using Modeled Inductor

  • Han Dong Ok;Choi Seung Chul;Lim Ji Hoon;Choo Sung Joong;Shin Sang Chul;Lee Jun Jae;Shim SunIl;Park Jung Ho
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.796-800
    • /
    • 2004
  • The main research on this paper is to model on-chip inductor in digital CMOS technology by using the foundry parameters and the physical structure. The s-parameters of a spiral inductor are extracted from the modeled equivalent circuit and then compared to the results obtained from HFSS. The structure and material of the inductor used for modeling in this work is identical with those of the inductor fabricated by CMOS process. To show why the modeled inductor instead of ideal inductor should be used to design a RF system, we designed dual band RF front-end receiver and then compared the results between when using the ideal inductor and using the modeled inductor.

  • PDF

Optimization of Lactic Acid Production in SSF by Lactobacillus amylovorus NRRL B-4542 Using Taguchi Methodology

  • Nagarijun Pyde Acharya;Rao Ravella Sreenivas;Rajesham Swargam;Rao Linga Venkateswar
    • Journal of Microbiology
    • /
    • v.43 no.1
    • /
    • pp.38-43
    • /
    • 2005
  • Lactic acid production parameter optimization using Lactobacillus amylovorus NRRL B-4542 was performed using the design of experiments (DOE) available in the form of an orthogonal array and a software for automatic design and analysis of the experiments, both based on Taguchi protocol. Optimal levels of physical parameters and key media components namely temperature, pH, inoculum size, moisture, yeast extract, $MgSO_4{\cdot}7H_20$, Tween 80, and corn steep liquor (CSL) were determined. Among the physical parameters, temperature contributed higher influence, and among media components, yeast extract, $MgSO_4{\cdot}7H_20$, and Tween 80 played important roles in the conversion of starch to lactic acid. The expected yield of lactic acid under these optimal conditions was 95.80% and the actual yield at optimum conditions was 93.50%.

Probabilistic dynamic analysis of truss structures

  • Chen, J.J.;Che, J.W.;Sun, H.A.;Ma, H.B.;Cui, M.T.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.2
    • /
    • pp.231-239
    • /
    • 2002
  • The problem of dynamic analysis of truss structures based on probability is studied in this paper. Considering the randomness of both physical parameters (elastic module and mass density) of structural materials and geometric dimension of bars respectively or simultaneously, the stiffness and mass matrixes of the elements and structure have been built. The structure dynamic characteristic based on probability is analyzed, and the expressions of numeral characteristics of inherence frequency random variable are derived from the Rayleigh's quotient. The method of structural dynamic analysis based on probability is developed. Finally, two examples are given.

An overview of the early stage of vehicle modeling and design

  • Baek, Moon-Yeol;Yi, Hyeong-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.334-337
    • /
    • 1996
  • This is a paper intended for initial stage of vehicle modeling and design. The needs to determine a variety of vehicle suspension parameters required for initial design has been difficult and time-consuming task. In order to facilitate a concise and efficient presentation of initial vehicle design procedure, this paper uses a mathematical model and physical geometry. Vehicle model consists of dimensions, inertias and mechanical constants. These vehicle model parameters divided into several categories : basic parameters, coefficients and constants, design specification, spring and damper, bush stiffness, stabilizer bar, suspension geometry, tire, and vehicle weights of various design condition. This paper uses a vehicle design fundamental (VDF) program running under Windows 95 graphical interface. The features of VDF will be briefly outlined in this paper.

  • PDF

Droplet size prediction model based on the upper limit log-normal distribution function in venturi scrubber

  • Lee, Sang Won;No, Hee Cheon
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1261-1271
    • /
    • 2019
  • Droplet size and distribution are important parameters determining venturi scrubber performance. In this paper, we proposed physical models for a maximum stable droplet size prediction and upper limit log-normal (ULLN) distribution parameters. For the proposed maximum stable droplet size prediction model, a Eulerian-Lagrangian framework and a Reitz-Diwakar breakup model are solved simultaneously using CFD calculations to reflect the effect of multistage breakup and droplet acceleration. Then, two ULLN distribution parameters are suggested through best fitting the previously published experimental data. Results show that the proposed approach provides better predictions of maximum stable droplet diameter and Sauter mean diameter compared to existing simple empirical correlations including Boll, Nukiyama and Tanasawa. For more practical purpose, we developed the simple, one dimensional (1-D) calculation of Sauter mean diameter.