Browse > Article
http://dx.doi.org/10.5370/JEET.2014.9.5.1670

Analysis of Tunnelling Rate Effect on Single Electron Transistor  

Sheela, L. (Dept. of Electrical and Electronics Engineering, Regional Centre of Anna University)
Balamurugan, N.B. (Dept. of Electronics and Communication Engineering, Thiagarajar College of Engineering)
Sudha, S. (Dept. of Electrical and Electronics Engineering, Regional Centre of Anna University)
Jasmine, J. (Dept. of Electrical and Electronics Engineering, Regional Centre of Anna University)
Publication Information
Journal of Electrical Engineering and Technology / v.9, no.5, 2014 , pp. 1670-1676 More about this Journal
Abstract
This paper presents the modeling of Single Electron Transistor (SET) based on Physical model of a device and its equivalent circuit. The physical model is derived from Schrodinger equation. The wave function of the electrode is calculated using Hartree-Fock method and the quantum dot calculation is obtained from WKB approximation. The resulting wave functions are used to compute tunneling rates. From the tunneling rate the current is calculated. The equivalent circuit model discuss about the effect of capacitance on tunneling probability and free energy change. The parameters of equivalent circuit are extracted and optimized using genetic algorithm. The effect of tunneling probability, temperature variation effect on tunneling rate, coulomb blockade effect and current voltage characteristics are discussed.
Keywords
Single electron transistor; Hartree fock; Wentzel kramers brilloun approximation; Genetic algorithm;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shih, Patrio Chiu, "An overview of nanoelectronic devices with emphasis on the Single Elecron Transistor", 2004.
2 Andreas Scholze, A. Schenk, and Wolfgang Fichtner, "SingleElectroDeviceSimulation", IEEE transaction on electron devices, Vol. 47, No. 10, Oct 2000.
3 Vincent Talbo, Sylvie Galdin-Retailleau, Audrey Valentin, and Philippe Dollfus, "Physical Simulation of Silicon-Nanocrystal-BasedSingle-Electron Transistors", IEEE transaction of electron devices, vol. 58, no. 10, October 2011.
4 El-Sayed A. M. Hasaneen, Mohamed A. A. Wahab, Mohamed G. Ahamed, "New Analytical Model of Single electron Transistor". Microelectron Reliability, 2011;51;. 733-745.   DOI   ScienceOn
5 El-Sayed A. M. Hasaneen, Mohamed A. A. Wahab, Mohamed G. Ahamed, "Exact analytical model of single electron transistor for practical IC design" Microelectron Reliability, 2011;51;. 733-745.   DOI   ScienceOn
6 Xiaohui Wang and Wolfgang Porod, "Analytical I-V Model for Single-Electron Transistors". VLSI Design, 2001;13; 189-192.   DOI   ScienceOn
7 A. Boubaker, Na. Sghaier, M. Troudi, A. Kalboussi, A. Souif, Macro-modelling for the compact simulation of single electron transistor using Simplorer, 2007.
8 A. Shahhoseini, K. Saghafi, M. K. Moravvej-Farshi, R. Faez, "An analytic Model for Kink Effect in I-V characteristics of Single electron Transistor". Iranian journel of Electrical and Electronic Engineering, 2009;5;234-243.
9 David Bohm, "Quantum Theory, Prentice Hall 1989.
10 Vinay pratap Singh, Arun Agrawal Shyam Babu Singh, "Analytical discussion of Single Electron Transistor(SET), International Journal of soft com puting and Engineering, Vol. 2, July 2012.
11 Nicholas allec, robert G. knobel, Li shang, An Adaptive algorithm for Single -Electron Device and Circuit Simulation, 2010. Yasuo Takahashi, Yukinori Ono, Akira Fujiwara and Hiroshi Inokawa, "Silicon Single- Electron Devices". Journal of Phys.: Condens. Matter, 2002, Vol. 14, R995-R1033.   DOI   ScienceOn
12 Konstatin K. Likharev, (1987). IEEE Trans. Magn., 1987, Vol. 23, No. 2, 1142-1145.   DOI
13 David Goldhaber-Gordon, Michael S. Montemerlo, J. Christopher Love, Gregory J. Opiteck, and James C. Ellenbogen, "Overview of Nanoelectronic Devices" Proceeding of the IEEE, 1997, Vol.85, No.4, 521-540.   DOI   ScienceOn
14 M. Maczka, G. Haldas, "Three dimentional simulator of the single electron transistor based on ISIS structure". Physica E: Rzeszow University of technology 2012, Vol. 44, 1202-1208.
15 Neil M. Zimmerman, Akira Fujiwara, Hiroshi Inokawa, and Yasuo Takahashi, "Electrostatically Hanggi, "On Derivations and Solutions of Master Equations andgated Si devices: Coulomb blockade and barrier capacitance". Applied Physics Letters 89, 052102 (2006) 1-3.   DOI   ScienceOn
16 S. Tiwari, F. Rana, K. Chan, H. Hanafi, W. Chan, and D. Buchanan in IEDM Tech. Dig., "Volatile and nonvolatile memories in silicon with nano-crystal storage" pp. 521-524 dec. 1995.
17 K. Likharev, "Single-electron devices and their applications" Proc. IEEE vol. 87, no. 4, pp. 606-632, Apr. 1999.   DOI   ScienceOn
18 Naveen Sharma, Om Kumar, Dr. G. C. Lall, "Promissing Device Single Electron Transistor" Journal of Electronics and Communication Technology, Vol. 3, Issue 1, Jan. - March 2012.
19 S. Dan and S. Mahapatra, "Analysis of energy quantization effects on single-electron transistor circuits", IEEE Trans. Nanotechnol., vol. 9, no. 1, pp. 38- 45, Jan. 2010.   DOI   ScienceOn
20 A. Shahhoseini, K. Saghafi, M. K. Moravvej-Farshi and R. Faez, "An Analytic Model for Kink Effect in I-V characteristics of Single Electron Transistors", Iranian Journal of Electrical & Electronic Engineering, Vol. 5, No. 4, Dec 2009.
21 U. Hashim, A. Rasmi, S. Sakrani, "SOI based nanowire single- electron transistors: design process development", Int. J. Mater. Sci. Simu. 1 (2007) 33-47.
22 Christian Dubuc, Arnaud Beaumont, Jacques Beauvais, Dominique Drouin, "Current conduction models in the high temperature single-electron transistor", Solid- State Electronics 53 (2009) 478-482.   DOI   ScienceOn