• Title/Summary/Keyword: Engine-room fire

Search Result 47, Processing Time 0.028 seconds

A Study on the Ventilation Conditions for the Prevention of Spontaneous Combustion of Small Ship Engine Room (소형선박 기관실의 자연발화 방지를 위한 환기조건에 관한 연구)

  • Park, Chan-Su
    • Fire Science and Engineering
    • /
    • v.22 no.4
    • /
    • pp.11-19
    • /
    • 2008
  • In order to show the most suitable ventilation conditions for the prevention of spontaneous combustion of small ship engine room, We have performed CFD simulation and analyzed flow and temperature fields. The flow patterns indicated differently according to the number and location of supply and exhaust opening. The case of locating the exhaust openings at the center of left and right side ceiling to the longitudinal symmetric line were more effective to eliminate the generated heat. When the number of supply and exhaust openings were increased, the case of increasing the number of exhaust opening showed more suitable ventilation conditions. The most suitable ventilation conditions in order to prevent the spontaneous combustion of small ship engine room was predicted that the supply opening located at the center of front and after side ceiling to across symmetric line, and the exhaust opening located at the center of both side walls.

A Study on Smoke Detection using LBP and GLCM in Engine Room (선박의 기관실에서의 연기 검출을 위한 LBP-GLCM 알고리즘에 관한 연구)

  • Park, Kyung-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.111-116
    • /
    • 2019
  • The fire detectors used in the engine rooms of ships offer only a slow response to emergencies because smoke or heat must reach detectors installed on ceilings, but the air flow in engine rooms can be very fluid depending on the use of equipment. In order to overcome these disadvantages, much research on video-based fire detection has been conducted in recent years. Video-based fire detection is effective for initial detection of fire because it is not affected by air flow and transmission speed is fast. In this paper, experiments were performed using images of smoke from a smoke generator in an engine room. Data generated using LBP and GLCM operators that extract the textural features of smoke was classified using SVM, which is a machine learning classifier. Even if smoke did not rise to the ceiling, where detectors were installed, smoke detection was confirmed using the image-based technique.

The Assessment of Fire Suppression Capability of Water-Mist System for Machinery Engine Room (선박기관구역 미분무수 소화설비 화재진압 성능 평가)

  • Choi, Byung-Il;Han, Yon-Shik;Oh, Chang-Bo;Kim, Myung-Bae;Kim, Chang
    • Fire Science and Engineering
    • /
    • v.21 no.2 s.66
    • /
    • pp.111-117
    • /
    • 2007
  • Full scale fire suppression test by water mist system were performed in machinery engine room ($20m{\times}15m{\times}10m$) according to IMO MSC/circ. 1165. The K-factor and operating pressure were 2.4 and 80 bar respectively. To assess the prediction capability of numerical simulation, FDS simulation was performed at the same operating condition with the full scale experiment. It was found that FDS simulation had the limitation for the fire extinguishing time prediction but was able to predict the spatial temperature distribution.

A Study on Fire Detection in Ship Engine Rooms Using Convolutional Neural Network (합성곱 신경망을 이용한 선박 기관실에서의 화재 검출에 관한 연구)

  • Park, Kyung-Min;Bae, Cherl-O
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.476-481
    • /
    • 2019
  • Early detection of fire is an important measure for minimizing the loss of life and property damage. However, fire and smoke need to be simultaneously detected. In this context, numerous studies have been conducted on image-based fire detection. Conventional fire detection methods are compute-intensive and comprise several algorithms for extracting the flame and smoke characteristics. Hence, deep learning algorithms and convolution neural networks can be alternatively employed for fire detection. In this study, recorded image data of fire in a ship engine room were analyzed. The flame and smoke characteristics were extracted from the outer box, and the YOLO (You Only Look Once) convolutional neural network algorithm was subsequently employed for learning and testing. Experimental results were evaluated with respect to three attributes, namely detection rate, error rate, and accuracy. The respective values of detection rate, error rate, and accuracy are found to be 0.994, 0.011, and 0.998 for the flame, 0.978, 0.021, and 0.978 for the smoke, and the calculation time is found to be 0.009 s.

Analysis of an Automotive Fire Case that a Fire Broke out during Driving Immediately after DPF Cleaning (DPF 클리닝 직후에 주행 중 발생한 승용차화재 사례의 분석)

  • Lee, Euipyeong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.556-565
    • /
    • 2016
  • As a result of the enforced control of emission, many devices, including the diesel particulate filter, have been installed in diesel cars to reduce the emission of particulate matters. In this study, a car fire case has been investigated and analyzed. A car fire broke out after the vehicle traveled a distance of 1.4 km from a car service center. The car was provided with DPF cleaning when the DPF warning light came on. After being dismantled in the engine room, the car's engine and gearbox were investigated. The findings showed that the rear part of the DPF metal case was melted and punctured, while the honeycomb filter of the DPF was damaged. The car fire was caused by an overheated DPF associated with inaccurate maintenance practice. Therefore, the responsibility of the fire rested on the car service center that performed the DPF cleaning.

Study on the Shortest Path finding of Engine Room Patrol Robots Using the A* Algorithm (A* 알고리즘을 이용한 기관실 순찰로봇의 최단 경로 탐색에 관한 연구)

  • Kim, Seon-Deok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.370-376
    • /
    • 2022
  • Smart ships related studies are being conducted in various fields owing to the development of technology, and an engine room patrol robot that can patrol the unmanned engine room is one such study. A patrol robot moves around the engine room based on the information learned through artificial intelligence and checks the machine normality and occurrence of abnormalities such as water leakage, oil leakage, and fire. Study on engine room patrol robots is mainly conducted on machine detection using artificial intelligence, however study on movement and control is insufficient. This causes a problem in that even if a patrol robot detects an object, there is no way to move to the detected object. To secure maneuverability to quickly identify the presence of abnormality in the engine room, this study experimented with whether a patrol robot can determine the shortest path by applying the A* algorithm. Data were obtained by driving a small car equipped with LiDAR in the ship engine room and creating a map by mapping the obtained data with SLAM(Simultaneous Localization And Mapping). The starting point and arrival point of the patrol robot were set on the map, and the A* algorithm was applied to determine whether the shortest path from the starting point to the arrival point was found. Simulation confirmed that the shortest route was well searched while avoiding obstacles from the starting point to the arrival point on the map. Applying this to the engine room patrol robot is believed to help improve ship safety.

The Effect of Fire Plume on the Characteristics of Air Flow and $CO_2$Extinguishant Transfer (화재화염이 유동 및 $CO_2$소화제 전달특성에 미치는 영향)

  • 박찬수;최주석
    • Fire Science and Engineering
    • /
    • v.16 no.4
    • /
    • pp.33-43
    • /
    • 2002
  • To analyze the effect of fire plume on the characteristics of air flow and $CO_2$, extinguishant transfer when extinguishant is injected into a closed space similar to a marine engine room with fire plume, a numerical simulation on a space was performed. Flow fields and $CO_2$, concentration fields are calculated according with the variation of the location of nozzles. In all cases excepting the case of all nozzles located in the right side of ceiling, an counterclockwise & clockwise recirculation flow was found in the region of the right and left side of the nozzle on the second floor and such a recirculation flow greatly affected mass transfer and the diffusion process of $CO_2$, extinguishant. In the region of the first floor with fire plume, the diffusion process of $CO_2$, extinguishant was in agreement with the extension process of recirculation flow. It is considered that the result of this study can be useful to designing the arrangement of nozzles for the $CO_2$ fire fighting equipments in a marine engine room.

The Transfer Characteristics of $CO_2$ Extinguishant According with the Location of Fire Plume (화재위치에 따른 $CO_2$소화제 전달특성)

  • 박찬수;최주석
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.28-35
    • /
    • 2003
  • To analyze the transfer characteristics of $CO_2$ extinguishant when extinguishant is injected into a closed space similar to a marine engine room, a numerical simulation was performed. Flow and Concentration fields are calculated according with the variation of the fire plume,s location. The results show that tile variation of fire plumes, location greatly effected on the flow patterns and the characteristics of $CO_2$ extinguishant transfer. In case of the fire plume located at left region of the 2nd floor center in the engine room consisted of first and second floor, The effects similar to the air curtain is found and cut off the mass transfer. In the characteristics with hight, the iso-concentration line below the extinguishable limit is formed in the left region of the 1st and 2nd floor center after the $CO_2$ extinguishant is completely injected. therefore I think that the results of this study are considered to arrange the $CO_2$ injection nozzles for the $CO_2$ fire fighting equipments.