• Title/Summary/Keyword: Engine-Side Mass

Search Result 19, Processing Time 0.024 seconds

A Study on Design Parameters of Dual Mass Flywheel System (Dual Mass Flywheel 시스템의 설계 파라미터에 관한 연구)

  • 송준혁;홍동표;양성모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.90-98
    • /
    • 1998
  • A Dual Mass Flywheel(D.M.F.) system is an evolution to the reduction of torsional vibration and impact noise occurring in powertrain when a vehicle is either moving or idling. The D.M.F. system has two flywh-eels, which is different from the conventional clutch system. One section belongs to the mass moment of in-ertia of the engine-side. The other section increases the mass moment of inertia of the transmission-side. These two masses are connected via a spring/damping system. This reduces the speed at which the dreaded resonance occurs to below idle speed. Since 1984m D.M.F. system has been developed. However, the processes of development of D.M.F. system don't have any difference from the trial and error method of conventional clutch system. This paper present the method for systematical design of D.M.F. system with dimensionless design varia-bles of D.M.F. system, mass ratio between two flywheels, natural frequency rate of two flywheels, and visc-osity coefficient. And expermental results are used to prove these theoretical results.

  • PDF

Fire Simulation for Vent Flow and Temperature in Engine Room of Small Ship: Effects of Ceiling Duct Location and Side Vent Size (소형선박 기관실의 개구부 유동 및 온도에 대한 화재시뮬레이션: 천장 통풍통 위치 및 측면 개구부 크기 영향)

  • Jeong, Lee-Gyu;Lee, Chi Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.454-465
    • /
    • 2020
  • Fire simulations were performed using the Fire Dynamics Simulator (FDS) software to examine the vent flow and temperature in the engine room of a small ship. A diesel fire with a heat release rate of 10 kW was targeted, and the effects of the ceiling duct location, side vent existence and nonexistence, and side vent size were investigated. The existence or nonexistence of the side vent and its size considerably affected the smoke behavior, mass flow rate through the vent, and temperature. When the side vent was not installed or was small, the smoke layer reached the floor in the engine room. In addition, as the side vent size increased, the mass flow rate through the vent increased with decreasing temperature value. However, the effects of the ceiling duct location on the smoke behavior, mass flow rate through the vent, and temperature seemed to be relatively minor compared to those of the side vent size. Therefore, to improve the fire safety of the engine room in a small ship, the side vent size is considered to be a more important design factor than the ceiling duct location.

Dual Mass Flywheel 시스템의 설계파라미터에 관한 연구

  • 송준혁
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.167-172
    • /
    • 1996
  • A Dual Mass Flywheel system is a evolution to the reduction of torsional vibration and impact noise occuring in powertrain when a vehicle is eit-her moving or idling. The name already explains what it is : The mass of the conventional single mass flywheel is divided. One section continues to belong to the mass moment of inertia of the engine-side. The ot-her section increass the mass moment of inertia of the transmission-side. The two masses are connected via a spring /damping system. This reduces the speed at which the dreaded resonance occurs to below idle speed. Since 1984 Dual Mass Flywheel has been de-veloped again and again. But the prosidures of de-velopment of D.M.F system didn't have had differe-nce from conventional clutch system's trial and err-or This paper presents the method for systematical design of D.M.F system with demensionless design variables of D.M.F system mass ratio between two flywheels λ. natual frequency rate of two flywheel s, ${\gamma}$and viscosity coefficient ζ. And experimental re-sults are used to prove these theoretical results.

  • PDF

An Experimental Study on Thermoelectric Generator Performance for Waste Coolant Recovery Systems in Vehicles (자동차 냉각수 폐열회수 열전발전 시스템의 성능에 관한 연구)

  • Lee, Dae-Woong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.7
    • /
    • pp.329-334
    • /
    • 2014
  • This study indicated the possibility of energy regeneration from waste coolant heat, by using thermoelectric generation integrated with heat pipe. The internal combustion engine rejects more than 60% wasteful energy to the atmosphere by heat. The thermoelectric generator has recently been studied, to convert the energy from engine waste heat into electricity. For coolant waste heat recovery, a thermoelectric generator was investigated, to find out the possibility of vehicular application. Performance characteristics were conducted with various test conditions of coolant temperature, coolant mass flow rate, air temperature, and air velocity, with the thermoelectric generator installed either horizontally or vertically. Experimental results show that the electric power and conversion efficiency increases according to the temperature difference between the hot and cold side of the thermoelectric generator, and the coolant flow rate of the hot side heat exchanger. Performance improvement can be expected by optimizing the heat pipe design.

Analysis and Prediction of Piston-Slap Induced Vibration (피스톤슬랩에 의한 엔진 진동현상의 분석과 예측)

  • 권기웅;김양한
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3045-3054
    • /
    • 1993
  • The mechanics related with piston-slap induced vibration has been studied in terms of non-dimensionalized dynamic equation of motion, various non-dimensional parameters such as non-dimensional side-thrust force and non-dimensional impact velocity throughout the numerical simulation. Experimental verification on the suggested prediction method has been also performed by using single cylinder engine which was carefully designed and manufactured to wisely control the engine parameters, especially clearance and the mass of piston. The predicted and experimentally observed vibration signature confirm that the proposed method is practically useful.

A Study of Core Water Injection Effect Influencing Plume in 75 tf $1^{st}$ Stage Liquid Propellant Rocket Engine Ground Test (75톤 1단 액체로켓엔진 지상시험에서 중앙 물분사가 후류에 미치는 영향 고찰)

  • Moon, Yoon-Wan;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.129-135
    • /
    • 2011
  • A study of efficient plume cooling by core water injection type was performed by computational fluid dynamics. A side injection type is well known, on the contrary, a core injection type is not well known. In order to figure out the characteristics of core injection type, several calculations were performed by computational fluid dynamics along various mass flow rates and locations of water injection. On the basis of analysis it was the adequate cooling condition that water mass flow rate to total mass flow rate was two times at least and location of water injections was L/De=1.2.

Effect of Geometrical Parameters on Discharge Coefficients of a Shear Coaxial Injector (전단동축형 분사기의 유량계수에 대한 형상학적 변수들의 영향)

  • Ahn, Jonghyeon;Lee, Keunseok;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.25 no.3
    • /
    • pp.95-102
    • /
    • 2020
  • Six shear coaxial injectors for a 3 tonf-class liquid rocket engine using oxygen and methane as propellants were designed and manufactured by considering geometric design parameters such as a recess length and a taper angle. Cold-flow tests on the injectors were performed using water and air as simulants. By changing the water mass flow rate and air mass flow rate, the injection pressure drop under single-injection and bi-injection was measured. The discharge coefficients through the injector oxidizer-side and fuel-side were calculated and the discharge coefficient ratio between bi-injection and single-injection was obtained. Under single-injection, the recess served to reduce the injection pressure drop on the injector fuel-side. For the injectors without recess, the discharge coefficients under bi-injection were almost the same as those under single-injection. However, for the injectors with recess, the taper angle and bi-injection had a significant effect on the discharge coefficient.

Experimental Study on Thermoelectric Generator Performance for Waste Heat Recovery in Vehicles (자동차 배기폐열 회수용 열전발전 시스템의 성능에 관한 연구)

  • Lee, Dae-Woong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.6
    • /
    • pp.287-293
    • /
    • 2014
  • Internal combustion engines release 30~40% of the energy from fossil fuels into the atmosphere in the form of exhaust gases. By utilizing this waste heat, plenty of energy can be conserved in the auto industry. Thermoelectric generation is one way of transforming the energy from engine's exhaust gases into electricity in a vehicle. The thermoelectric generators located on the exhaust pipe have been developed for vehicle applications. Different experiments with thermoelectric generators have been conducted under various test conditions as following examples: hot gas temperature, hot gas mass flow rate, coolant temperature, and coolant mass flow rate. The experimental results have shown that the generated electrical power increases significantly with the temperature difference between the hot and the cold side of the thermoelectric generator and the gas flow rate of the hot-side heat exchanger. In addition, the gas temperature of the hot-side heat exchanger decreases with the length of the thermoelectric generator, especially at a low gas flow rate.

Study on Friction Characteristics of Pressure Control Valve for Ship Engine (선박용 압력조절밸브의 마찰 특성에 관한 연구)

  • Choi, Won-Sik;Park, In-Soo;Kang, Chang-Won;Sandi, Pratama Pandu;Chung, Sung-Won
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.4
    • /
    • pp.185-192
    • /
    • 2016
  • Low operational cost and high efficiency is absolute requirements in the mass production of the ship engine. Increasing the performance of the fuel injection system in the diesel engine is one kind of solution to improve the efficiency. Modern diesel engines are using electronic control module as the main controller in the fuel injection control system, however the mechanical system still involved in the modern control system. In modern ship engine, a control valve was used in injection fuel to regulate the flow of the fuel. High pressure and friction are intensively occur within this part, therefore high wear resist and low friction coefficient material including fine lubricating are needed. This study is to figure out the wear resist material and proper lubricant in the control valve fuel injection. The experiment has been tested using pin on disk in several treatments those are used various lubricants and non-lubricant condition. Two kinds of lubricant were used in this experiment such as INDERIN AW-32 and paraffin oil. INDERIN AW-32 has a better result compared to non-lubricant condition, which are 20% performance increases than non-lubricant condition. SCM 440 was providing small friction coefficient in the lower velocity. The friction coefficient was constantly maintains at 0.1 m/s of velocity or above respectively with the increment of the loads. Using INDERIN AW-32 and paraffin oil the lowest friction coefficient occurred at the lower load, and increases side by side with the increment of loads.

Maximum Power Output Cycle of Heat Engines (열기관의 최대출력 사이클)

  • 김수연;정평석;노승탁;김효경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.694-701
    • /
    • 1990
  • The cycle of heat engine which produces the maximum power output is constructed when heat sources are finitely constant, and the maximum power as a thermodynamic limit of the engine, is obtained. The characteristics of the maximum power cycle are as follows, which represent the operation conditions and design conditions of the heat engine to produce the maximum power output. In heat exchangers, the temperature profiles of the heat source and the working fluid have the same functional formula and the ratio of the working fluid temperature to the heat source temperature is constant. When heat capacity flow rates(product of the specific heat and the mass flow rate) of the working fluid as well as the heat source are constant, the values of those of working fluid exist between those of two heat sources. The relation of the temperature and the heat capacity flow rate is established without the states of the heat sources and the capacities of heat exchangers, which is ( $T_{h}$/ $T_{H}$)( $C_{h}$/ $C_{H}$)=( $T_{1}$/ $T_{L}$)( $c_{1}$/ $c_{L}$)=1. The capacity of the heat exchanger of hot side is equal to that of cold side regardless of the states of the heat sources and the total capacities of heat exchangers.hangers.ers.