• 제목/요약/키워드: Engine torque

Search Result 594, Processing Time 0.027 seconds

Performance Evaluation of a Round Baler Attachable to Medium Agricultural Tractors (중형 트랙터용 원형베일러 성능평가)

  • Chang, Dong-Il;Chung, Sun-Ok;Cho, Byoung-Kwan;Cho, Nam-Hong
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.2
    • /
    • pp.309-314
    • /
    • 2010
  • Bale is an operation of collecting livestock feed materials from field crop residue, and mechanization demand on the operation has been increased. Bailers imported from foreign countries such as Japan and European countries have been used, but those models showed improper performance in Korean situations. In recent years, a steel-roller type round baler attachable to medium size tractors(40 to 60 HP) for effective bale operation in Korea was developed. This study was conducted to evaluate field performance of the baler. For proper baling operation, engine speed was greater than 1,800rpm, average traction force and PTO torque were about 4kN and in a range of 380-671Nm, and maximum values were about 7kN and 3,000Nm, respectively. Performance evaluation tests for sudan grass, rice straw, and blue barley showed that field capacity was 0.59ha/h for blue barley and 0.99ha/h for sudan grass and rice straw. Bale weight, diameter, width, and bulk density were in ranges of 176.1~418.4kg, 1.07~1.12m, 1.02~1.04m, and 175.3~454.1kg/$m^3$. Noise sound level during the baling operation was 4dB greater than idle operation condition, which was considered to be ignorant.

A Study on the Propeller Thrust for a Moored Ship (계류중인 선박의 프로펠러 추력 추정에 관한 연구)

  • Ha, M.K.;Song, I.H.;Kim, D.J.;Wee, K.S.;Kim, S.W.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.50-59
    • /
    • 1997
  • Shipbuilder checks the status of main engine and propeller operation before sea trial. Generally these tests are carried out at a quay during fitting out of the ship. For these tests the operator has to estimate the maximum RPM with permissible torque and thrust to ensure the safety of the mooring line and ship. In this paper, the propeller characteristics according to the draft variation for a moored ship is inveatigated. From these tests, it is shown that shaft submergence is a dominant parameter in the propeller performance at shallow shaft submergence and that the propeller performance is dependent upon the propeller RPM when the shaft submergence is kept unchanged. In this study, a simple formula of the required thrust for a given propeller shaft submergence and propeller RPM is derived. 1be propeller thrust, which is calculated by another formula in case of dtep draft, is compared with results of bollard pull test for FPSO.

  • PDF

Development of Core Technologies of Multi-tasking Machine Tools for Machining Highly Precision Large Parts (고정밀 대형 부품가공용 복합가공기 원천기술 개발)

  • Jang, Sung-Hyun;Choi, Young-Hyu;Kim, Soo-Tae;An, Ho-Sang;Choi, Hag-Bong;Hong, Jong-Seung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.129-138
    • /
    • 2012
  • In this study, three types of large scale multi-tasking machine tools together with core technologies involved have been developed and introduced; a multi-tasking machine tool for large scale marine engine crankshafts, a multi-tasking vertical lathe for windmill parts, and a large scale 5-axis machine tool of gantry type. Several special purpose devices has been necessarily developed for the purpose of handling and machining big and heavy workpieces accurately, such as PTD (Pin Turning Device) with revolving ring spindle for machining eccentric crankshaft pins, hydrostatic rotary table and steady rest for supporting and resting heavy workpieces, and 2-axis automatic swiveling head for high-quality free surface machining. Core technologies have been also developed and adopted on their detail design stage; 1) structural design optimization with FEM structural analysis, 2) theoretical hydrostatic analysis for the PTD and rotary table bearings, 3) box-in-box type cross-rail and octagonal ram design to secure machine rigidity and accuracy, 4) constant spindle rpm control against gravitational torque due to unbalanced workpiece.

Effect of Gasoline Property Change on Exhaust Gas and Catalyst (휘발유 물성변화에 따른 배출가스 및 촉매에 미치는 영향성 연구)

  • Noh, Kyeong-Ha;Kim, Sung-Woo;Lee, Min-Ho;Kim, Ki-Ho;Lee, Jung-Min
    • Journal of Power System Engineering
    • /
    • v.22 no.6
    • /
    • pp.67-73
    • /
    • 2018
  • Gasoline that meets the quality standards is distributed in Korea. However, consumers who use toluene or solvent mixed with gasoline have appeared due to rising crude oil prices and for the purpose of tax evasion. Gasoline quality standard is enacted by the domestic and international research reference. A wrong fuel can influence automobile performance or environmental issue. Thus, empirical data from this issue is necessary. Therefore, this research observed catalyst influence by gasoline property change and inspect influence of environment. In this study, fuel property evaluation, lean-burn evaluation, and real vehicle exhaust emission test were performed. In the result of fuel property, the fuel "A" was measured to be up to 27% less octane than the normal gasoline and the distillation property was measured 24% higher than normal gasoline. In the test result of single cylinder engine lean-burn test, the fuels "A" and "B" show torque value 20% less than the normal gasoline. As a result of vehicle test using the catalyst, the fuel "A" was increased more than the normal gasoline with 83% THC, 1,806% CO and 128% NOx, and the fuel "B" was increased more than normal gasoline with 1.6% THC, 391% CO and 142% NOx.

Study of Oil Jet Effect on the Temperature of Piston Head (피스톤 헤드 온도에 오일 제트가 미치는 영향에 대한 연구)

  • Min, Sunki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.536-540
    • /
    • 2018
  • As the performance of engines improves, the temperature of engines is increasing, resulting in a high piston temperature. An excessively high piston temperature may result in torque drop or engine failure. An oil jet is used to reduce the piston temperature. In this study, to monitor the effect of oil jet, a templug was used to measure the piston temperature. A templug is a kind of sensor and the hardness of the templug changes according to the piston temperature. Using a templug, the maximum temperature of the piston was measured with and without an oil jet. The piston temperature was lowered using the oil jet. The highest temperature region changed from the center crown to the front/rear area. In addition, the temperature difference between the highest and lowest regions became smaller.

Study on the Shift Characteristics of a 2speed Manual Transmission apply to V-Blet (V-blet를 적용한 2단 수동변속기의 변속특성에 관한 연구)

  • Youm, Kwang-wook
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.55-60
    • /
    • 2020
  • As research and development of eco-friendly vehicles are expanding worldwide, additional devices of vehicles are reduced or deleted to increase the mileage, or research is being conducted to reduce weight. Among them, the multi-stage transmission that was applied to the internal combustion engine vehicle was deleted and replaced with a reducer, and the initial driving power is secured by increasing the torque through the control of the motor output value. However, since frequent motor speed change can result in a load increase, this study attempts to develop a compact and lightweight manual two-stage reducer with a general reducer structure. Therefore, a two-speed transmission with two gear ratio was designed by inserting a large gear and a small gear in a structure with a parallel shaft to connect the gears with a V-belt in the form of a parallel shaft reducer, and setting the gear ratio of the low and high gears respectively. In addition, power performance according to the rotational speed and load of the transmission was checked through a test, and the heat generation characteristics generated during driving were checked to verify the validity of the transmission.

Modeling and Simulation of Small and Medium-sized Ships for Fuel Reduction Rate Verification (연료 감소율 검증을 위한 중소형 선박의 모델링 및 시뮬레이션)

  • Kim, Sung-Dong;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.914-921
    • /
    • 2022
  • The International Maritime Organization (IMO) has set a goal of reducing ship's carbon dioxide emissions by 70% and greenhouse gas emissions by 50% by 2050 compared to 2008. Shipowners and shipyards are promoting various R&D activities such as LNG propulsion, ammonia propulsion, electric propulsion, CO2 capture, and shaft generators as a way to satisfy this problem. The dual shaft generator has the advantage that it can be directly applied to an existing ship through remodeling. In this paper, the total fuel reduction rate that can be obtained by applying the shaft generator to the existing ship was verified through simulation. For this purpose, the size of the medium-sized ship was defined, and the governor, diesel engine, propeller, torque switch, generator for shaft generator, propulsion motor for shaft generator, and ship model were modeled and simulated.

Correlation Between Knee Muscle Strength and Maximal Cycling Speed Measured Using 3D Depth Camera in Virtual Reality Environment

  • Kim, Ye Jin;Jeon, Hye-seon;Park, Joo-hee;Moon, Gyeong-Ah;Wang, Yixin
    • Physical Therapy Korea
    • /
    • v.29 no.4
    • /
    • pp.262-268
    • /
    • 2022
  • Background: Virtual reality (VR) programs based on motion capture camera are the most convenient and cost-effective approaches for remote rehabilitation. Assessment of physical function is critical for providing optimal VR rehabilitation training; however, direct muscle strength measurement using camera-based kinematic data is impracticable. Therefore, it is necessary to develop a method to indirectly estimate the muscle strength of users from the value obtained using a motion capture camera. Objects: The purpose of this study was to determine whether the pedaling speed converted using the VR engine from the captured foot position data in the VR environment can be used as an indirect way to evaluate knee muscle strength, and to investigate the validity and reliability of a camera-based VR program. Methods: Thirty healthy adults were included in this study. Each subject performed a 15-second maximum pedaling test in the VR and built-in speedometer modes. In the VR speedometer mode, a motion capture camera was used to detect the position of the ankle joints and automatically calculate the pedaling speed. An isokinetic dynamometer was used to assess the isometric and isokinetic peak torques of knee flexion and extension. Results: The pedaling speeds in VR and built-in speedometer modes revealed a significantly high positive correlation (r = 0.922). In addition, the intra-rater reliability of the pedaling speed in the VR speedometer mode was good (ICC [intraclass correlation coefficient] = 0.685). The results of the Pearson correlation analysis revealed a significant moderate positive correlation between the pedaling speed of the VR speedometer and the peak torque of knee isokinetic flexion (r = 0.639) and extension (r = 0.598). Conclusion: This study suggests the potential benefits of measuring the maximum pedaling speed using 3D depth camera in a VR environment as an indirect assessment of muscle strength. However, technological improvements must be followed to obtain more accurate estimation of muscle strength from the VR cycling test.

Effects of Ultrasound on Skin Elasticity and Elasticity of Deeper Skin in Healthy Women (초음파 사용이 건강한 여성의 피부 탄력과 피부 깊은 탄력 개선에 미치는 영향)

  • Min-Joo Ko;Gi-Soo Kim;Eun-Mi Jang;Jae-Seop Oh
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.1
    • /
    • pp.79-86
    • /
    • 2023
  • Purpose : Aging is reflected on the face of women due to the depletion of collagen and hydration in the facial skin overtime. This study investigated the effect of multiple SONO® ultrasound for a 4-week period on the skin health by measuring the skin elasticity and deeper skin elasticity in the tested women subjects. Methods : Twenty healthy women were recruited for this experiment. All the participants applied multiple ultrasound device (SONO®) during this experiment. The SONO® device was set to ANTI-AGING function and five power steps such as 1, 3, 10 and 17 MHz were used during this experiment, and directly contacted with the facial skin. Specifically, the probe was contacted with the entire face except for the nose and eyes for 10 min on each side of the face every day and repeated for 4 weeks. The skin elasticity and the elasticity of deeper skin were measured at three times (0, 2, 4 weeks) using a Ballistometer and dermal torque meter, respectively. The one way repeated ANOVA was used to compare the skin elasticity and the elasticity of deeper skin among three times (0, 2, 4 weeks). Results : The skin elasticity (p<.05) and elasticity of deeper skin (p<.05) were significantly increased at 2 weeks and 4 weeks of intervention compared to that at 0 weeks. For the skin elasticity, there was no significant difference between 2 and 4 weeks of intervention (p>.05). For the elasticity of deeper skin, it increased significantly at 4 weeks compared to 2 weeks of intervention (p<.05). Conclusion : These findings suggest that applying multiple SONO® ultrasound to the facial skin of healthy women for 4 weeks, can increase the skin elasticity and elasticity of deeper skin by supporting epidermal hydration and dermal collagen production.

Analysis of the power requirements of a 55 kW class agricultural tractor during a garlic harvesting operation

  • Seung-Min, Baek;Wan-Soo, Kim;Seung-Yun, Baek;Hyeon-Ho, Jeon;Jun-Ho, Lee;Ye-In, Song;Yong, Choi;Young-Keun, Kim;Sang-Hee, Lee;Yong-Joo, Kim
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.1039-1050
    • /
    • 2021
  • The purpose of this study is to measure load data for a 55 kW class agricultural tractor during a harvesting operation and to analyze the required power according to the working conditions. A field test was conducted at three different tractor speeds (1.2, 1.3, and 1.4 km·h-1). A load measurement system was developed for the front axles, rear axles, and for power take-off (PTO). The torque and rotational speeds of the axles and PTO were measured during the field test and were calculated as the required power. The results showed that the total required power was in the range of 4.86 - 5.48 kW during the harvesting operation according to the tractor speed, and it was confirmed that this represents a ratio of 8.8 - 10.0% of the engine rated power. Also, it was confirmed that the required power of the axle and PTO increased as the tractor speed increased. In future studies, we plan to supplement the measurement system for a tractor to include a hydraulic system and perform a field test for harvesting various underground crops.