• Title/Summary/Keyword: Engine torque

Search Result 594, Processing Time 0.022 seconds

THEORETICAL FLOW ANALYSIS AND EXPERIMENTAL STUDY ON TIME RESOLVED THC FORMATION WITH RESIDUAL GAS IN A DUAL CVVT ENGINE

  • Myung, C.L.;Kwak, H.;Hwang, I.G.;Park, S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.697-704
    • /
    • 2007
  • Recently, a variable valve timing system has been widely adopted in internal combustion engine in order to improve the fuel economy and torque at low engine speed. In addition, it is known that varying valve timing according to the various engine operations could reduce exhaust gas, especially NOx, because of residual gas by valve overlap. In this study, to improve the low exhaust gas and fuel economy at part load condition, the residual gas and back flow of exhaust gas due to valve overlap were calculated computationally. Moreover, the characteristics of engine performances and NOx formations were investigated with the experiment of combination of intake and exhaust valve timing condition. Under these various valve operating conditions, the effects of both the positive valve overlap and negative valve overlap(valve underlap) were examined simultaneously. Finally, the characteristics of cyclic THC emission were analyzed by using Fast Response FID(FR-FID) in the cylinder, intake port and exhaust port positions. Besides, the effect of the different gradients of the valve timing change on engine performance was investigated and an optimum control strategy was suggested.

A Development and Basic Characteristics of MCVVT Research Hydrogen Engine for Practical Use of External Mixture Hydrogen-Fueled Engine (흡기관 분사식 수소기관의 실용화를 위한 MCVVT 연구용 수소기관의 개발과 기본 특성)

  • Kang, J.K.;Cong, Huynh Thanh;Noh, K.C.;Lee, J.T.;Lee, J.H.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.3
    • /
    • pp.255-262
    • /
    • 2006
  • To develop a hydrogen fueled engine with external mixture which uses in high reliability, low cost and low pressure, the single cylinder research engine with MCVVT(Mechanical Continuous Variable Valve Timing) system is developed and its basic characteristics analyzed. The MCVVT developed has high reliability and the valve timing change is possible in wide range continuously. Though the mechanical loss due to MCVVT system is increased a little, back-fire suppression research for valve overlap period is no difficulty. It's also confirmed that the hydrogen-fueled engine has lower torque and is possible high lean burn. As fuel-air equivalence ratio is high, as thermal efficiency is remarkable increasing.

Effects of exhaust pipe curvature on the performance of a 4 cycle diesel engine (디이젤 엔진에서 排氣管 屈曲이 엔진性能에 미치는 影響)

  • 문병수;서정윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.735-741
    • /
    • 1986
  • An experimental study on the effects of exhaust pipe curvature on the performance of a diesel engine is presented. The experiments were carried out on a 4-cycle, 216 c.c diesel engine and two types of pipe curvature, circular arc and rectangle, were tested. The shaft output, shaft torque and specific fuel consumption were obtained by inserting bent pipes of different dimensions into the exhaust pipe at various engine operation conditions. It was found that the engine performance was decreased by the circular arc bent pipe and the effects were dominated by its arc angle. The decrease of engine performance was minimized by the arc angle of 180.deg.. By the rectangle pipes the performance was more decreased and the effects were little influenced by its dimensions.

Design of Vehicle Control Algorithm and Engine-generator Control for Drivability of Range-extended Electric Vehicle (주행거리 연장형 전기자동차의 차량제어 알고리즘 설계 및 운전성 확보를 위한 엔진 발전시스템 제어)

  • Park, Youngkug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.649-659
    • /
    • 2016
  • This paper describes control algorithm and control structure of vehicle control unit for range-extended electric vehicle equipped with engine-generator system, and specially presents methods which determine optimal operating points and decreases a vibration or a shock for operating the engine-generating system. The vehicle control algorithm is consisted of several parts which are sequence control, calculation of wheel demand torque, determination of operating points, and management of operating points and so vehicle controller has be made possible to efficiently manage calibration parameters. The control algorithm is evaluated by driving test modes, launching performance and operating engine-generator system and so on. In conclusion, this paper present methods for extending a mileage, improving a launching performance and reducing vibration or shock when the engine-generating system is starting or is stopping.

A HYDROGEN FUELLED V-8 ENGINE FOR CITY-BUS APPLICATION

  • Sierens, R.;Verhelst, S.
    • International Journal of Automotive Technology
    • /
    • v.2 no.2
    • /
    • pp.39-45
    • /
    • 2001
  • Hydrogen is seen as one of the important energy vectors of the next century. Hydrogen as a renewable energy source, provides the potential for a sustainable development particularly in the transportation sector. Hydrogen driven vehicles reduce both local as well as global emissions. The laboratory of transporttechnology (University of Gent) converted a GM/Crusader V-8 engine for hydrogen use. Once the engine is optimised, it will be built in a low-floor midsize hydrogen city bus for public demonstration. For a complete control of the combustion process and to increase the resistance to backfire (explosion of the air-fuel mixture in the inlet manifold), a sequential timed multipoint injection of hydrogen and an electronic management system is chosen. The results as a function of the engine parameters (ignition timing. injection timing and duration, injection pressure) we given. Special focus is given to topics related to the use of hydrogen as a fuel: ignition characteristics (importance of electrode distance), quality of the lubricating oil (crankcase gases with high contents of hydrogen), oxygen sensors (very lean operating conditions), noise reduction (configuration and length of inlet pipes). The advantages and disadvantages of a power regulation only by the air to fuel ratio (as for diesel engines) against a throttle regulation (normal gasoline or gas regulation) are examined. Finally the goals of the development of the engine are reached: power output of 90 kW, torque of 300 Nm, extremely low emission levels and backfire-safe operation.

  • PDF

The Study on the Noise Contributing Factors Extraction of the Passenger Diesel Engine(I) (승용 디젤엔진 소음 기여인자 추출에 관한 연구(I))

  • Kim, Sung-Hun;Kwon, Yong-Jun;Ko, Pil-Kyu;Jung, Yeon-Uk;Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.90-98
    • /
    • 2011
  • Noises from diesel engine are the major issues for noise pollution as well as affect customers' purchasing needs to vehicles powered by diesel engine. This study investigates to screen-out main factors that contribute to noises from diesel engine using VGT 2000cc engine developed recently. Changes of fuel temperature, intake temperature and the presence of three way catalyst don't affect the 'Engine Radiation Noise' and the solely three way catalyst influence on the 'Tail Pipe Noise'. Especially, there are no effects of the presence of three way catalyst on torque, which is main subject that should be considered in secondary study.

A study on exhaust emission characteristics according to operating conditions and butanol blended fuels in a small diesel engine for fishing vessel (소형 어선용 디젤기관의 운전조건과 부탄올 혼합유의 배기 배출물 특성에 관한 연구)

  • KIM, Sang-Am;WANG, Woo-Gyeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.3
    • /
    • pp.256-263
    • /
    • 2021
  • In this study, blending oils of diesel oil and butanol were used as fuel oil for diesel engine to measure combustion pressure, fuel consumption, air ratio and exhaust gas emission due to various operating conditions such as engine revolution and torque. Using these data, the results of analyzing the engine performance, combustion characteristics and exhaust emission characteristics such as NOx (nitrogen oxides), CO2 (carbon dioxide), CO (carbon monoxide) and soot were as follows. The fuel conversion efficiency at each load was highest when driven in the engine revolution determined by a fixed pitch propeller law. Except 30% butanol blending oil, fuel conversion efficiency of the other fuel oils increased as the load increased. Compared to diesel oil, using 10% and 20% butanol blending oil as fuel oil was advantageous in terms of thermal efficiency, but it did not have a significant impact on the reduction of exhaust gas emissions. On the other hand, future research is needed on the results of the 20% butanol blending oil showing lower or similar levels of smoke concentration and carbon monoxide emission rate other than those types of diesel oil.

An Experimental Study on Combustion and Emission Characteristics of a CI Diesel Engine Fueled with Pentanol/Diesel Blends (압축착화 디젤엔진에서 펜탄올/경유 혼합유의 연소 및 배기 특성에 관한 실험적 연구)

  • JAESUNG KWON;BEOMSOO KIM;JEONGHYEON YANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.97-104
    • /
    • 2024
  • In this study, combustion experiments were conducted to assess engine performance and exhaust gas characteristics using four blends of 1-pentanol and diesel as fuel in a naturally aspirated 4-stroke diesel engine. The blending ratios of 1-pentanol were 5, 10, 15, and 20% by volume. The experiments were carried out under four different engine torque conditions (6, 8, 10, and 12 Nm) while maintaining a constant engine speed of 2,000 rpm for all fuel types. The results showed that the use of 1-pentanol/diesel blended fuel generally led to a decrease in brake thermal efficiency, attributed to the low calorific value of the blend and the cooling effect due to the latent heat of vaporization. Additionally, both brake specific energy consumption and brake specific fuel consumption increased. However, the use of the blended fuel resulted in a general decrease in NOx concentration, a decrease in CO concentration except some conditions, and a reduction in smoke opacity across all conditions.

Particulate Emissions from a Direct Injection Spark-ignition Engine Fuelled with Gasoline and LPG (가솔린 및 LPG 연료를 사용하는 직접분사식 불꽃점화엔진에서 배출되는 극미세입자 배출 특성에 관한 연구)

  • Lee, Seok-Hwan;Oh, Seung-Mook;Kang, Kern-Yong;Cho, Jun-Ho;Cha, Kyoung-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.65-72
    • /
    • 2011
  • In this study, the numbers, sizes of particles from a single cylinder direct injection spark-ignition (DISI) engine fuelled with gasoline and LPG are examined over a wide range of engine operating conditions. Tests are conducted with various engine loads (2~10bar of IMEP) and fuel injection pressures (60, 90, and 120 bar) at the engine speed of 1,500 rpm. Particles are sampled directly from the exhaust pipe using rotating disk thermodiluter. The size distributions are measured using a scanning mobility particle sizer (SMPS) and the particle number concentrations are measured using a condensation particle counter (CPC). The results show that maximum brake torque (MBT) timing for LPG fuel is less sensitive to engine load and its combustion stability is also better than that for gasoline fuel. The total particle number concentration for LPG was lower by a factor of 100 compared to the results of gasoline emission due to the good vaporization characteristic of LPG. Test result presents that LPG for direct injection spark ignition engine help the particle emission level to reduce.

A Study on Combustion and Emission Characteristics in Compression Ignition CRDI Diesel Engine (직접분사식 압축점화 디젤엔진의 연소 및 배기특성에 관한 연구)

  • Kim, Gi-Bok;Choi, Il-Dong;Ha, Ji-Hoon;Kim, Chi-Won;Yoon, Chang-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.4
    • /
    • pp.234-244
    • /
    • 2014
  • Recently it has been focused that the automobile engine has developed in a strong upward tendency for the use of the high viscosity and poorer quality fuels in achieving the high performance, fuel economy, and emission reduction. Therefore it is not easy to solve the problems between low specific fuel consumption and exhaust emission control at motor cars. In this study, it is designed and used the engine test bed which is installed with turbocharger and intercooler. In addition to equipped using CRDI by controlling injection timing with mapping modulator, it has been tested and analyzed the engine performance, combustion characteristics, and exhaust emission as operating parameters, and they were engine speeds(rpm), injection timing(bTDC), and engine load(%). From the result of an experimental analysis, peak cylinder pressure and the rate of pressure rise were increased, and the location of it was closer toward top dead center according to the increasing of engine speed and load, and with advancing injection timing. The combustion characteristics are effected by fuel injection timing due to be enhanced the mass burned fraction. Using the engine dynamometer for analyzing the engine performance, the engine torque and power have been enhanced according to advancing the fuel injection timing. In analyzing of exhaust emission, there has been a trade-off between PM and NOx with increasing of engine speed and load, and with advanced injection timing. The experimental data are shown that the formation of NOx has increased and PM, vice versa.