• 제목/요약/키워드: Engine simulation

검색결과 1,463건 처리시간 0.03초

무인전투기 배기구 형상에 따른 유동 및 적외선 신호 특성 분석 (Analysis of Flow and Infrared Signature Characteristics according to UCAV Nozzle Shape)

  • 노수영;배지열;김지혁;남주영;조하나;조형희
    • 한국추진공학회지
    • /
    • 제23권5호
    • /
    • pp.27-35
    • /
    • 2019
  • 스텔스 기술은 레이더 및 적외선 시커와 같은 탐지기로부터의 탐지를 피하는 기술이다. 특히 IR 미사일은 항공기 자체의 열을 감지하기 때문에 적외선 신호에 의한 탐지는 더욱 위협적이며 적외선 스텔스 기술은 항공기 및 UCAV(Unmanned Combat Aerial Vehicle)의 생존을 보장하는데 필수적이다. 본 연구에서는 UCAV 노즐 설계에 따른 공력 및 적외선 스텔스 성능 분석이 수행되었다. 수치해석 결과에 따르면 Double S형 노즐은 엔진의 고온부를 차폐할 수 있기 때문에 적외선 신호를 줄이는 데 효과적이다. 또한, Double S형 노즐에서 회전부 위치가 뒤쪽에 위치할수록 적외선 신호가 감소함을 확인하였다.

원형관 내 데토네이션 파 구조 및 동적 특성 수치 연구 (Numerical Study of Detonation Wave Structure and Dynamics in a Circular Tube)

  • 조덕래;김종관;장근진;최정열
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.278-281
    • /
    • 2012
  • 펄스 데토네이션 엔진과 같이 원형 관내를 전파하는 데토네이션 파의 삼차원 파면 구조 및 동적 특성을 파악하기 위한 수치 해석을 수행하였다. 비가역 Arrhenius 반응 모델을 이용하여 일련의 pre-exponential 값에 대한 해석을 수행하여 2-셀,3-셀, 4-셀 및 6-셀 데토네이션 모드의 삼차원 파면구조에 대한 생성 매커니즘들을 살펴보았다. 2차원 결과와 비교하여 반경 방향에서 slapping 횡단 파의 효과를 확인하였으며, 모든 다중-셀 모드에서 벽면에서의 데토네이션 파면 구조와 그을음 막 기록들은 반경 방향으로 slapping 파가 움직이는 동안 시계 및 반 시계 방향으로 움직이는 횡단파에 의하여 형성되며, 굽어진 벽면에서 반사되는 횡단파는 다차원 confinement 효과에 의하여 강도가 변화한다.

  • PDF

980MPa급 열연 후판재 버링 공정의 변수 최적화 연구 (Study on the Optimization of Parameters for Burring Process Using 980MPa Hot-rolled Thick Sheet Metal)

  • 김상훈;도두이퉁;박종규;김영석
    • 소성∙가공
    • /
    • 제30권6호
    • /
    • pp.291-300
    • /
    • 2021
  • Currently, starting with electric vehicles, the application of ultra-high-strength steel sheets and light metals has expanded to improve mileage by reducing vehicle weight. At a time when internal combustion engine vehicles are rapidly changing to electric vehicles, the application of ultra-high-strength steel is expanding to satisfy both weight reductions and the performance safety of the chassis parts. There is an urgent need to improve the quality of parts without defects. It is particularly difficult to estimate the part formability through the finite element method (FEM) in the burring operation, so product design has been based on the hole expansion ratio (HER) and experience. In this study, design of experiment (DOE), analysis of variance (ANOVA), and regression analysis were combined to optimize the formability by adjusting the process variables affecting the burring formability of ultra-high-strength steel parts. The optimal variables were derived by analyzing the influence of variables and the correlation between the variables through FE analysis. Finally, the optimized process parameters were verified by comparing experiment with simulation. As for the main influence of each process variable, the initial hole diameter of the piercing process and the shape height of the preforming process had the greatest effects on burring formability, while the effect of a lower round of punching in the burring process was the least. Moreover, as the diameter of the initial hole increased, the thickness reduction rate in the burring part decreased, and the final burring height increased as the shape height during preforming increased.

실부하 적용을 통한 농용 트랙터 변속기 해석 (Analysis of Agricultural Tractor Transmission using Actual Farm Workload)

  • 김정길;박진선;최규정;이동근;신민석;오주영;남주석
    • 한국기계가공학회지
    • /
    • 제19권11호
    • /
    • pp.42-48
    • /
    • 2020
  • The agricultural tractor is a multi-purpose vehicle, which is frequently used in the agricultural field. It must be highly reliable in terms of human safety. Design and analysis of agricultural tractors must be performed using actual agricultural workload to maintain high reliability. Additionally, the frequency with which various components and systems are used must also be taken into consideration. In this study, a tractor is built to measure its workload in the actual field. Further, the measured load was analyzed for various farming tasks. The range of ratios of consumed power to engine power was measured to be 42.6%-87.2%, 75.1%-97%, 26.5%-59.2% for a plow, rotary, and harvest tasks, respectively. The results were fed into a transmission simulation model to analyze the strength and life of the transmission components. We conclude that a more reliable product can be constructed by incorporating the transmission analyses using the actual load.

고속 비행의 Lift-offset 복합형 헬리콥터 기체의 능동 진동 제어 시뮬레이션 (Active Airframe Vibration Control Simulations of Lift-offset Compound Helicopters in High-Speed Flights)

  • 홍성부;권영민;김지수;이유빈;박병현;신현철;박재상
    • 한국군사과학기술학회지
    • /
    • 제24권4호
    • /
    • pp.357-367
    • /
    • 2021
  • This paper studies the simulations of active airframe vibration controls for the Sikorsky X2 helicopter with a lift-offset coaxial rotor. The 4P hub vibratory loads of the X2TD rotor are obtained from the previous work using a rotorcraft comprehensive analysis code, CAMRAD II. The finite element analysis software, MSC.NASTRAN, is used to model the structural dynamics of the X2TD airframe and to analyze the 4P vibration responses of the airframe. A simulation study using Active Vibration Control System(AVCS) with Fx-LMS algorithm to reduce the airframe vibrations is conducted. The present AVCS is modeled using MATLAB Simulink. When AVCS is applied to the X2TD airframe at 250 knots, the 4P longitudinal and vertical vibration responses at the specified airframe positions, such as the pilot seat, co-pilot seat, engine deck, and prop gearbox, are reduced by 30.65 ~ 94.12 %.

Study on Equivalent Consumption Minimization Strategy Application in PTI-PTO Mode of Diesel-Electric Hybrid Propulsion System for Ships

  • Lee, Dae-Hong;Kim, Jong-Su;Yoon, Kyoung-Kuk;Hur, Jae-Jung
    • 해양환경안전학회지
    • /
    • 제28권3호
    • /
    • pp.451-458
    • /
    • 2022
  • In Korea, five major ports have been designated as sulfur oxide emission control areas to reduce air pollutant emissions, in accordance with Article 10 of the "Special Act on Port Air Quality" and Article 32 of the "Ship Pollution Prevention Regulations". As regulations against vessel-originated air pollutants (such as PM, CO2, NOx, and SOx) have been strengthened, the Ministry of Oceans and Fisheries(MOF) enacted rules that newly built public ships should adopt eco-friendly propulsion systems. However, particularly in diesel-electric hybrid propulsion systems,the demand for precise control schemes continues to grow as the fuel saving rate significantly varies depending on the control strategy applied. The conventional Power Take In-Power Take Off(PTI - PTO) mode control adopts a rule-based strategy, but this strategy is applied only in the low-load range and PTI mode; thus, an additional method is required to determine the optimal fuel consumption point. The proposed control method is designed to optimize fuel consumption by applying the equivalent consumption minimization strategy(ECMS) to the PTI - PTO mode by considering the characteristics of the specific fuel oil consumption(SFOC) of the engine in a diesel-electric hybrid propulsion system. To apply this method, a specific fishing vessel model operating on the Korean coast was selected to simulate the load operation environment of the ship. In this study, a 10.2% reduction was achieved in the MATLAB/SimDrive and SimElectric simulation by comparing the fuel consumption and CO2 emissions of the ship to which the conventional rule-based strategy was applied and that to which the ECMS was applied.

수심 변화에 따른 볼라드 당김 및 과부하 조건에서의 다중 포드 추진 쇄빙선박의 여유추력 추정에 대한 수치해석적 연구 (Study on Prediction of Net Thrust of Multi-Pod-Driven Ice-Breaking Vessel Under Bollard Pull and Overload Conditions According to the Change of Water Depth Using Computational Fluid Dynamics-Based Simulations)

  • 김진규;김형태;김희택;이희동
    • 대한조선학회논문집
    • /
    • 제58권3호
    • /
    • pp.158-166
    • /
    • 2021
  • In this paper, a numerical analysis technique using a body force model is investigated to estimate the available net thrust of multi-pod-driven ice-breaking vessels under bollard pull and overload conditions. To employ the body force model in present flow simulations, drag and thrust components acting on the pod unit are calculated by using Propeller Open Water (POW) test data. The available net thrusts according to the direction of operation are evaluated in both bollard pull and overload conditions under deep water. The simulation results are compared with the model test data. The available net thrusts, calculated by the present analysis for ahead operating modes at 3~6 knots which are typical speeds of the target vessel in arctic field, are agreed well with the model test results. It is also found that the present result for astern operating mode appears approximately 6 % larger than the model test result. In addition, the available net thrusts are calculated under the both operating conditions accompanied by shallow water effects, and the main cause of the difference is studied. Based on the result of the present study, it is confirmed that the body force model can be applied to the performance evaluation of multi-pod propulsion system and the main engine selection in early design stage of the vessel.

적접분사 엔진의 유동장 및 분무특성에 미치는 선회비의 영향에 대한 수치해석적 연구 (Numerical Simulation of Swirl Effect on the Flow Fields and Spray Characteristics in Direct Injection Engine)

  • 홍기배;김형섭;양희천;유홍선
    • 한국안전학회지
    • /
    • 제10권3호
    • /
    • pp.120-129
    • /
    • 1995
  • 직접분사엔진에서 기상과 분무액적간의 유동특성 및 분무특성에 미치는 선회비의 영향에 대하여 수치해석 하였다. 정적인 환경에서는 분무초기를 제외하고는 계산과 실험결과가 잘 일치하였다. 운전상태에서는 연료분사 기간동안 속도장의 영향이 증가하여 스쿼시유동의 중요성이 상대적으로 감소하였다. 선회비가 증가할수록 높은 난류에너지가 연소실내에 분포되며 분무액적이 확산되고 기상과의 상호작용이 강해져서 증발률이 증가하였다.

  • PDF

Climate change impact on seawater intrusion in the coastal region of Benin

  • Agossou, Amos;Yang, Jeong-Seok
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.157-157
    • /
    • 2022
  • Recent decades have seen all over the world increasing drought in some regions and increasing flood in others. Climate change has been alarming in many regions resulting in degradation and diminution of available freshwater. The effect of global warming and overpopulation associated with increasing irrigated farming and valuable agricultural lands could be particularly disastrous for coastal areas like the one of Benin. The coastal region of Benin is under a heavy demographic pressure and was in the last decades the object of important urban developments. The present study aims to roughly study the general effect of climate change (Sea Level Rise: SLR) and groundwater pumping on Seawater intrusion (SWI) in Benin's coastal region. To reach the main goal of our study, the region aquifer system was built in numerical model using SEAWAT engine from Visual MODFLOW. The model is built and calibrated from 2016 to 2020 in SEAWAT, and using WinPEST the model parameters were optimized for a better performance. The optimized parameters are used for seawater intrusion intensity evaluation in the coastal region of Benin The simulation of the hydraulic head in the calibration period, showed groundwater head drawdown across the area with an average of 1.92m which is observed on the field by groundwater level depletion in hand dug wells mainly in the south of the study area. SWI area increased with a difference of 2.59km2 between the start and end time of the modeling period. By considering SLR due to global warming, the model was stimulated to predict SWI area in 2050. IPCC scenario IS92a simulated SLR in the coastal region of Benin and the average rise is estimated at 20cm by 2050. Using the average rise, the model is run for SWI area estimation in 2050. SWI area in 2050 increased by an average of 10.34% (21.04 km2); this is expected to keep increasing as population grows and SLR.

  • PDF

MATERIAL MATCHING PROCESS FOR ENERGY PERFORMANCE ANALYSIS

  • Jung-Ho Yu;Ka-Ram Kim;Me-Yeon Jeon
    • 국제학술발표논문집
    • /
    • The 4th International Conference on Construction Engineering and Project Management Organized by the University of New South Wales
    • /
    • pp.213-220
    • /
    • 2011
  • In the current construction industry where various stakeholders take part, BIM Data exchange using standard format can provide a more efficient working environment for related staffs during the life-cycle of the building. Currently, the formats used to exchange the data from 3D-CAD application to structure energy analysis at the design stages are IFC, the international standard format provided by IAI, and gbXML, developed by Autodesk. However, because of insufficient data compatibility, the BIM data produced in the 3D-CAD application cannot be directly used in the energy analysis, thus there needs to be additional data entry. The reasons for this are as follows: First, an IFC file cannot contain all the data required for energy simulation. Second, architects sometimes write material names on the drawings that are not matching to those in the standard material library used in energy analysis tools. DOE-2.2 and Energy Plus are the most popular energy analysis engines. And both engines have their own material libraries. However, our investigation revealed that the two libraries are not compatible. First, the types and unit of properties were different. Second, material names used in the library and the codes of the materials were different. Furthermore, there is no material library in Korean language. Thus, by comparing the basic library of DOE-2, the most commonly used energy analysis engine worldwide, and EnergyPlus regarding construction materials; this study will analyze the material data required for energy analysis and propose a way to effectively enter these using semantic web's ontology. This study is meaningful as it enhances the objective credibility of the analysis result when analyzing the energy, and as a conceptual study on the usage of ontology in the construction industry.

  • PDF