• Title/Summary/Keyword: Engine section

Search Result 163, Processing Time 0.025 seconds

A Study on Flow Analysis of Model Engine Coolant Flow Passage : Comparison with Experimental Data of Lotus Model and Flow Rate Control (엔진 냉각수 유동통로 모델에 대한 수치해석 : Lotus 모델의 실험 결과와의 비교 및 유량제어)

  • Cho, W.K.;Hur, N.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.17-23
    • /
    • 1995
  • A numerical analysis on engine coolant is made by the use of FVM based general purpose 3 dimensional Navier-Stokes solver, TURB-3D. Numerical solutions are verified by comparison with the experimental data of Lotus model. The results show a good qualitative as well as quantitative comparison. Coolant flow rate control is attempted through adjusting the cross section area of passage base on the results of an original coolant passage. It is concluded from the results that the flow rate control is possible as attempted, and thus can be used in the real engine design.

  • PDF

Stress Analysis of a Coil Spring with Nonlinear Section (이형단면 코일 스프링의 응력해석)

  • 이인혁;한동철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1831-1838
    • /
    • 1991
  • The deformation of coil spring with noncircular section, which is used in the engine valve of automobiles under the applied load is usually accompanied by sectional warping and additional displacements of geometric center. In this study the isoparametric beam element formulations are modified and expanded to consider these two effects. To verify these formulations, simple torsion tests are made and compared with the analysis results. For the case of the zero-pitch spring, the stress distributions of oval and circular section are coincided with those of the analysis using the solid elements. Cylindrical coil springs with oval section are analyzed. These results are agreed with those of Nagaya.

NUMERICAL OPTIMIZATION OF TEMPERATURE DISTRIBUTION IN HRSG SYSTEM USING INLET GUIDE VANE (전치 가이드 베인 설치에 따른 열회수 보일러 입구 온도 최적화)

  • Lee, Soo-Yoon;Ahn, Joon;Shin, Seung-Won
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.1-8
    • /
    • 2009
  • Diverging channel from gas engine exit to the inlet section of Heat Recovery Steam Generator (HRSG) has been re-designed for 1 MW system. To improve the uniformity in velocity and temperature distribution of existing design(Case A and B), two additional test geometries have been chosen for the numerical simulation. At first, gas burner exit section has been centered to the inlet section of the boiler(Case C) and uniformity in velocity and temperature distribution has been improved considerably. Secondly, the diverging channel length can be further reduced to compact geometry with new guide vane design (Case D and E). Proposed design shows overall improvement in uniformity in velocity and temperature distribution compared to existing one.

Modal Test of the 2nd Stage of Small Launch Vehicle (소형 위성 발사체 2단부 모드 시험)

  • Seo, Sang-Hyun;Jeong, Ho-Kyeong;Youn, Se-Hyun;Park, Soon-Hong;Jang, Young-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.258-261
    • /
    • 2006
  • The structure of small launch vehicle can be divided into engine section and payload section. This paper introduces modal test of the payload section of small launch vehicle which is composed to satellite, PLA (Payload Adapter), VEB (Vehicle Equipment Bay), KMS (Kick Motor Support) and KM (Kick Motor). From this test, dynamic properties of the 2nd stage structure of small launch vehicle can be obtained. In this test, to simulate free-free boundary condition, test object was hung by 4 bungee cords and excited by using impact hammer Modal test data are analyzed by using TDAS(Test Data Analysis Software). As the result, modal parameters and mode shapes below 100Hz of the 2nd stage of small launch vehicle were identified.

  • PDF

A Study on Design Parameters of Dual Mass Flywheel System (Dual Mass Flywheel 시스템의 설계 파라미터에 관한 연구)

  • 송준혁;홍동표;양성모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.90-98
    • /
    • 1998
  • A Dual Mass Flywheel(D.M.F.) system is an evolution to the reduction of torsional vibration and impact noise occurring in powertrain when a vehicle is either moving or idling. The D.M.F. system has two flywh-eels, which is different from the conventional clutch system. One section belongs to the mass moment of in-ertia of the engine-side. The other section increases the mass moment of inertia of the transmission-side. These two masses are connected via a spring/damping system. This reduces the speed at which the dreaded resonance occurs to below idle speed. Since 1984m D.M.F. system has been developed. However, the processes of development of D.M.F. system don't have any difference from the trial and error method of conventional clutch system. This paper present the method for systematical design of D.M.F. system with dimensionless design varia-bles of D.M.F. system, mass ratio between two flywheels, natural frequency rate of two flywheels, and visc-osity coefficient. And expermental results are used to prove these theoretical results.

  • PDF

Experimental Study on Performance Characteristics of Liquid Rocket Engine (액체로켓엔진의 성능특성 연구)

  • 장행수;이성웅;조용호;우유철
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.211-217
    • /
    • 2003
  • A liquid rocket engine(LRE) Using LO$_2$/LNG(Liquefied Natural Gas) propellants was experimentally evaluated. The purpose of this study was to investigate the performance of the LO$_2$/LNG rocket combustor that is composed of three sect ions(igniter spacer, cylinder and nozzle section), especially focused on the influence of regenerative cool ing effect in association with the phase of regenerative coolant Series of tests were conducted under the conditions of water cool ing and regenerative cool ing with LNG in the cylinder section and independent cool ing with water in the igniter spacer and nozzle sections. Parametric studies on the variation of a chamber pressure and mixture ratio were undertaken. In addition, effect of propellant(LNG) composition and its enthalpy on the performance is examined.

  • PDF

A Study On The Gas-Flow In the Four-Stroke Engine At Compression Stroke (사행정기관의 압축행정시의 가스유동에 관한 연구)

  • 이기명
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.4
    • /
    • pp.3970-3979
    • /
    • 1975
  • On account of the development of the high speed internal combustion engines, several methods for increasing burning velocity has been investigated lately. Installation of a squash area on a cylinder head is one of the simple and practical method to induce the strong tubulant flow of air-fuel mixtureinto a combustion chamber. In this study, a four-stroke engine used for agricultural purpose was tested as an experimental model. A mathematical model of the squash velocity was derived, and also, several characteristics of the squash phenomena during the motoring of the engine used as a modelwere investigated. The results obtained were as follows: (1) Mathematical model of squash velocity was established and cheked (2) Squaash velocity and engine speed were found to be proportional to the squash area while they were inversely proportional to the squash width. (3) Squash velocity and crank angle at which the squash velocity become its peak were influenced by the magnitude of squash clearance: increase of squash clearance made squash velocity reduced acd made the peak of the squash velocity for from the top dead center and (4) When the squash area is divided in small areas baving unit width along the squash section, squash velocity at each unit width was proportional to the magnitude of the squash distance covered by the unit width.

  • PDF

A Study on Film Cooling Characteristics of Liner in Liquid Rocket Engine (액체로켓엔진에서의 상온 기체를 이용한 라이너 막냉각 특성 연구)

  • Jeon, Jun-Su;Lee, Yang-Suk;Lee, Dong-Hyeong;Kim, Yoo;Ko, Young-Sung;Chung, Hae-Seung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.170-173
    • /
    • 2007
  • Cooling characteristics of a liner were investigated by a film cooling method using a gas nitrogen in a rocket engine. High temperature gas of this test was made by mixing liquid nitrogen with combustion gas of a liquid rocket. A supply system of gas nitrogen was additionally constructed to the existing test facility of liquid rocket engine, and a new test section consisted of a liner and a gas injection ring was manufactured. A 10 second firing test for finding cooling characteristics of the liner was successfully conducted and liner surface temperatures and hot gas temperature was obtained.

  • PDF

Basic Study on the Regenerator of Stilting Engine (III) - Heat Transfer and Flow Friction Characteristic of the Regenerator with Combined Wire-mesh Matrix - (스털링 기관용 재생기에 관한 기초 연구 (III) - 복합메쉬 철망을 축열재로 한 재생기의 전열 및 유동손실 특성 -)

  • Lee S. M.;Kim T. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.4 s.111
    • /
    • pp.195-201
    • /
    • 2005
  • The output of Stirling engine is influenced by the regenerator effectiveness. The regenerator effectiveness is influenced by heat transfer and flow friction loss of the regenerator matrix. In this paper, in order to provide a basic data for the design of regenerator matrix, characteristics of heat transfer and flow friction loss were investigated by a packed method of matrix in the oscillating flow as the same condition of operation in a Stirling engine. As matrices, several kinds of combined wire screen meshes were used. The results are summarized as follows; The packed meshes with high mesh no. in the side of heater part of regenerator showed effective than the packed meshes with low mesh no. in the side of cooler part of regenerator. The temperature difference and pressure drop of the regenerator were not made by the specific surface area of wire screen meshes but by the minimum free-flow area to the total frontal area. Among the No. 150 single screen meshes, 200-60 combined meshes, the 200-150-100 combined meshes showed the highest in effectiveness.

Experimental study on flow field behind backward-facing step using detonation-driven shock tunnel

  • Kim, T.H.;Yoshikawa, M.;Narita, M.;Obara, T.;Ohyagi, S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.85-92
    • /
    • 2004
  • As a research to develop a SCRAM jet engine is actively conducted, a necessity to produce a high-enthalpy flow in a laboratory is increasing. In order to develop the SCRAM-jet engine, stabilized combustion in a supersonic flow-field should be attained, in which a duration time of flow is extremely short. Therefore, a mixing process of breathed air and fuel, which is injected into supersonic flow-fields is one of the most important problem. Since, the flow inside SCRAM jet engine has high-enthalpy, an experimental facility is required to produce such high-enthalpy flow-field. In this study, a detonation-driven shock tunnel was built and was used to produce high-enthalpy flow. Further-more, SCRAM jet engine model equipped backward-facing step was installed at test section and flow-fields were visualized using color-schlieren technique and high speed video camera. The fuel was injected perpendicular to the flow of Mach number three behind backward-facing step. The height of the step, distance of injection and injection pressure were changed to investigate the effects of step on a mixing characteristic between air and fuel. The schlieren photograph and pressure histories show that the fuel was ignited behind the step.

  • PDF