• Title/Summary/Keyword: Engine noise

Search Result 902, Processing Time 0.023 seconds

Detection of tonal frequency of underwater radiated noise via atomic norm minimization (Atomic norm minimization을 통한 수중 방사 소음 신호의 토널 주파수 탐지)

  • Kim, Junhan;Kim, Jinhong;Shim, Byonghyo;Hong, Jungpyo;Kim, Seongil;Hong, Wooyoung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.543-548
    • /
    • 2019
  • The tonal signal caused by the machinery component of a vessel such as an engine, gearbox, and support elements, can be modeled as a sparse signal in the frequency domain. Recently, compressive sensing based techniques that recover an original signal using a small number of measurements in a short period of time, have been applied for the tonal frequency detection. These techniques, however, cannot avoid a basis mismatch error caused by the discretization of the frequency domain. In this paper, we propose a method to detect the tonal frequency with a small number of measurements in the continuous domain by using the atomic norm minimization technique. From the simulation results, we demonstrate that the proposed technique outperforms conventional methods in terms of the exact recovery ratio and mean square error.

Damage detection in steel structures using expanded rotational component of mode shapes via linking MATLAB and OpenSees

  • Toorang, Zahra;Bahar, Omid;Elahi, Fariborz Nateghi
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • When a building suffers damages under moderate to severe loading condition, its physical properties such as damping and stiffness parameters will change. There are different practical methods besides various numerical procedures that have successfully detected a range of these changes. Almost all the previous proposed methods used to work with translational components of mode shapes, probably because extracting these components is more common in vibrational tests. This study set out to investigate the influence of using both rotational and translational components of mode shapes, in detecting damages in 3-D steel structures elements. Three different sets of measured components of mode shapes are examined: translational, rotational, and also rotational/translational components in all joints. In order to validate our assumptions two different steel frames with three damage scenarios are considered. An iterative model updating program is developed in the MATLAB software that uses the OpenSees as its finite element analysis engine. Extensive analysis shows that employing rotational components results in more precise prediction of damage location and its intensity. Since measuring rotational components of mode shapes still is not very convenient, modal dynamic expansion technique is applied to generate rotational components from measured translational ones. The findings indicated that the developed model updating program is really efficient in damage detection even with generated data and considering noise effects. Moreover, methods which use rotational components of mode shapes can predict damage's location and its intensity more precisely than the ones which only work with translational data.

A Study On The Classification Of Driver's Sleep State While Driving Through BCG Signal Optimization (BCG 신호 최적화를 통한 주행중 운전자 수면 상태 분류에 관한 연구)

  • Park, Jin Su;Jeong, Ji Seong;Yang, Chul Seung;Lee, Jeong Gi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.905-910
    • /
    • 2022
  • Drowsy driving requires a lot of social attention because it increases the incidence of traffic accidents and leads to fatal accidents. The number of accidents caused by drowsy driving is increasing every year. Therefore, in order to solve this problem all over the world, research for measuring various biosignals is being conducted. Among them, this paper focuses on non-contact biosignal analysis. Various noises such as engine, tire, and body vibrations are generated in a running vehicle. To measure the driver's heart rate and respiration rate in a driving vehicle with a piezoelectric sensor, a sensor plate that can cushion vehicle vibrations was designed and noise generated from the vehicle was reduced. In addition, we developed a system for classifying whether the driver is sleeping or not by extracting the model using the CNN-LSTM ensemble learning technique based on the signal of the piezoelectric sensor. In order to learn the sleep state, the subject's biosignals were acquired every 30 seconds, and 797 pieces of data were comparatively analyzed.

A Study on the Production of Supporting Ring Using Casting for Public Environmental Vehicles (대중적 환경차를 위한 주조를 이용한 서포트링 제작에 관한 연구)

  • Jeongick Lee
    • Journal of Advanced Technology Convergence
    • /
    • v.2 no.3
    • /
    • pp.17-24
    • /
    • 2023
  • I am designing a research paper with the aim of studying hybrid vehicles. Hybrid vehicles, as the next-generation automobiles, feature a combination of internal combustion engines and battery engines, resulting in a revolutionary reduction in fuel consumption and harmful gas emissions compared to conventional vehicles. The electric motor in hybrid cars derives power from a high-voltage battery installed within the vehicle, which is recharged during vehicle motion. In contrast to traditional cars, which often experience energy losses due to idling caused by traffic congestion, hybrid systems optimize efficiency by skillfully managing the interplay between the internal combustion engine and the electric motor. This approach effectively addresses the inherent drawbacks of gasoline or diesel engines.Hybrid cars offer an array of benefits, including improved fuel efficiency, environmental friendliness, cost-effectiveness, and reduced noise emission. Consequently, they are progressively becoming a favored alternative among a growing number of individuals. This research endeavor has the potential to contribute towards curbing environmental pollution and dedicating efforts to future automotive research.

Study on the shaping process of turbocharger nozzle slide joint (터보차저 노즐 슬라이드 조인트의 정형공정에 관한 연구)

  • Kim, Bong-Ju;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.107-114
    • /
    • 2017
  • A turbocharger is an engine supercharger that is driven by exhaust gas. It improves the output and fuel efficiency by increasing the charging efficiency of the mixture gas, which is achieved by changing the rotatory power of the turbine connected to the exhaust passage. It is important to control the supercharging for this purpose. A nozzle slide joint is one of the core parts. Austenitic stainless steel is currently used as the material for this part, and its excellent mechanical properties include high heat resistance and corrosion resistance. However, because of its poor machinability, there are many difficulties in producing products with complicated shapes. Machining is used in the production of nozzle slide joints for high dimensional accuracy after metal powder injection molding. As design variables in this study, we investigated the sintering temperature, product stress, deformation rate, radius of curvature of the punch, and angle of the chamfer punch, which are related to the strain and shapes. The goal is to suggest a forming process using Nitronic 60 that does not require machining to manufacture a nozzle slide joint for a turbocharger. Accordingly, we determined the best process environment using finite-element analysis, the signal-noise ratio, and the Taguchi method for experiment design. The relative density and hydrostatic pressure of the final product were in accordance with the results of the finite element analysis. Therefore, we conclude that the Taguchi method can be applied to the design process of metal powder injection molding.

Design of Sliding Mode Fuzzy Controller for Vibration Reduction of Large Structures (대형구조물의 진동 감소를 위한 슬라이딩 모드 퍼지 제어기의 설계)

  • 윤정방;김상범
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.63-74
    • /
    • 1999
  • A sliding mode fuzzy control (SMFC) algorithm is presented for vibration of large structures. Rule-base of the fuzzy inference engine is constructed based on the sliding mode control, which is one of the nonlinear control algorithms. Fuzziness of the controller makes the control system robust against the uncertainties in the system parameters and the input excitation. Non-linearity of the control rule makes the controller more effective than linear controllers. Design procedure based on the present fuzzy control is more convenient than those of the conventional algorithms based on complex mathematical analysis, such as linear quadratic regulator and sliding mode control(SMC). Robustness of presented controller is illustrated by examining the loop transfer function. For verification of the present algorithm, a numerical study is carried out on the benchmark problem initiated by the ASCE Committee on Structural Control. To achieve a high level of realism, various aspects are considered such as actuator-structure interaction, modeling error, sensor noise, actuator time delay, precision of the A/D and D/A converters, magnitude of control force, and order of control model. Performance of the SMFC is examined in comparison with those of other control algorithms such as $H_{mixed 2/{\infty}}$ optimal polynomial control, neural networks control, and SMC, which were reported by other researchers. The results indicate that the present SMFC is an efficient and attractive control method, since the vibration responses of the structure can be reduced very effectively and the design procedure is simple and convenient.

  • PDF

Development of Voice Information System for Safe Navigation in Marine Simulator (시뮬레이터 기반 음성을 이용한 항행정보 안내시스템의 개발)

  • Son N. S.;Kim S. Y.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.3
    • /
    • pp.28-34
    • /
    • 2002
  • As the technology of Speech Recognition(SR) and Text-To-Speech(TTS) develops rapidly, voice control and guidance system is thought to be very helpful for safe navigation. But Voice Control and Guidance System(VCGS) is not yet so popularly included in Navigation Supporting System(NSS). The main reason of this is that VCGS is so complicated and user-unfriendly that navigation officers hesitate to use VCGS. Frequent errors in operating VCGS due to low rate of SR are another reason. To make VCGS more practicable for safe navigation, we design the user-friendly VCGS. Firstly, by using interviews we survey functions and procedures that navigation officers want to be included in VCGS. Secondly, to raise the rate of SR, we tun the environmental noise in bridge and to reduce the errors due to low rate of SR in operating VCGS, we design the functions of self-correction. Also we apply a user-independent SR engine so that procedures of teaming of speakers is basically not necessary. Using simulator experiments the functions and procedures of the user-friendly YCGS for safe navigation are evaluated and the results of evaluation are fed back to the design. As a result, we can design the VCGS more helpful for safe navigation. In this paper, we describe the features of the user-friendly VCGS for safe navigation and discuss the results of simulator experiments.

  • PDF

Research on Vehicle Diagnostic and Monitoring technology Using WiBro Portable Device (와이브로 휴대기기를 사용한 차량진단 및 모니터링 기술에 관한 연구)

  • Ryoo, Hee-Soo;Won, Yong-Gwan;Park, Kwon-Chul;Ahn, Yong-Beom
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.10
    • /
    • pp.17-26
    • /
    • 2010
  • This is concerned with the technology to monitor the vehicle operation, failure and disorder by using WiBro portable device. More precisely, the technology makes it possible that the information collection device is connected to both ECU(Electronic Control Unit) which is the device for controlling engine, transmission, brake, air-bag, etc that are connected to in-vehicle network and OBD-II connector that is for data collection from various sensors. In addition, with a WiBro portable device (cell phone, PDA, PMP, UMPC, etc). equipped with a vehicle diagnostic programs, information for operation, failure and malfunction can be obtained and analyzed in real-time, and alarm is alerted when the vehicle is in abnormal status, which makes the early reactions to the status. Furthermore, the collected data can be sent through WiBro network to the server managed by the company specialized in managing the vehicles, thus the technology could help the drivers who have less knowledge about their auto-vehicles have safe and economic driving. There is always a possibility of malfunction due to various types of noise that are caused by wring-harness when the device is wired-connected. In this research, in order to overcome this problem, we propose a system configuration that can do monitoring and diagnosis with a device for collecting data from vehicle and a personal WiBro device. Also, we performed research on data acquisition and interlock for the system defined by the definition for information and data sharing platform.

Comparison of Control Strategies for Military Series-Type HEVs in Terms of Fuel Economy Based on Vehicle Simulation (시뮬레이션을 이용한 군용 직렬형 HEV 의 주행 전략에 따른 연비 성능 비교에 관한 연구)

  • Jung, Dae-Bong;Kim, Hyung-Jun;Kang, Hyung-Mook;Park, Jae-Man;Min, Kyoung-Doug;Seo, Jung-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.31-36
    • /
    • 2012
  • Military vehicles, compared to conventional vehicles, require higher driving performance, quieter operation, and longer driving distances with minimal fuel supplies. The series hybrid electric vehicle can be driven with no noise and has high initial startup performance, because it uses only a traction motor that has a high startup torque to drive the vehicle. Moreover, the fuel economy can be improved if the vehicle is hybridized. In series hybrid electric vehicles, the electric generation system, which consists of an engine and a generator, supplies electric energy to a battery or traction motor depending on the vehicle driving state and battery state of charge (SOC). The control strategy determines the operation of the generation system. Thus, the fuel economy of the series hybrid electric vehicle relies on the control strategy. In this study, thermostat, power-follower, and combined strategies were compared, and a 37% improvement in the fuel economy was implemented using the combined control strategy suggested in this study.

Feature Extraction Algorithm for Distant Unmmaned Aerial Vehicle Detection (원거리 무인기 신호 식별을 위한 특징추출 알고리즘)

  • Kim, Juho;Lee, Kibae;Bae, Jinho;Lee, Chong Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.114-123
    • /
    • 2016
  • The effective feature extraction method for unmanned aerial vehicle (UAV) detection is proposed and verified in this paper. The UAV engine sound is harmonic complex tone whose frequency ratio is integer and its variation is continuous in time. Using these characteristic, we propose the feature vector composed of a mean and standard deviation of difference value between fundamental frequency with 1st overtone as well as mean variation of their frequency. It was revealed by simulation that the suggested feature vector has excellent discrimination in target signal identification from various interfering signals including frequency variation with time. By comparing Fisher scores, three features based on frequency show outstanding discrimination of measured UAV signals with low signal to noise ratio (SNR). Detection performance with simulated interference signal is compared by MFCC by using ELM classifier and the suggested feature vector shows 37.6% of performance improvement As the SNR increases with time, the proposed feature can detect the target signal ahead of MFCC that needs 4.5 dB higher signal power to detect the target.