• Title/Summary/Keyword: Engine mount system

Search Result 109, Processing Time 0.021 seconds

Investigations on Improvement of Vehicle Design Feature on Idle Shake with Automatic Transmission (자동변속기 장착 차량의 아이들 셰이크 진동 성능 개선 대책에 대한 고찰)

  • Choi, Cheon;Suh, Myung-Won;Kim, Young-Gin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.110-120
    • /
    • 2000
  • In order to improve the vibration characteristics of mid sized passenger car automatic transmission at idle experimental and theoretical studies have been carried out. Idle shake in "D" range occurs by various reasons such as characteristics of body bending resonance between subsystems and engine mounts etc. Using full vehicle finite element analyses and modal tests we introduce the way to reduce the idle shake in the early design stage. It shows that the exciting forces are the 2nd order torque and force of engine. A powertrain system modes in "D" range are entirely effected by the additional boundary conditions of drive line. As a result the frequencies of subsystems are arranged to be lined up at the idle frequency range in order to avoid the resonances with subsystems To reduce the idle shake mounts of radiator are tuned to act as a dynamic damper to 1st bending frequency of the body. In addition a hydraulic mount which is optimized by Phase Shift Method is applied to the rear engine mount.e rear engine mount.

  • PDF

FxLMS Algorithm for Active Vibration Control of Structure By Using Inertial Damper with Displacement Constraint (관성형 능동 댐퍼를 이용한 구조물 진동 제어에서 댐퍼 질량의 변위 제한을 고려한 FxLMS 알고리즘)

  • Kang, Min Sig
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.545-557
    • /
    • 2021
  • Engine is the main source of vibration that generates unwanted noise and vibration of vehicle chassis. Especially, in submarine applications, radiation of noise signatures can be detected at some distance away from the submarine using a sonar array. Thus quiet operation is crucial for submarine's survivability. This study addresses reduction of the force transmissibility originating from engines and transmitted to hull through engine mounts. An inertial damper, as an actuator of hybrid mount system, is addressed to reduce even further the level of vibration. Narrow band FxLMS algorithms are broadly used to cancel the vibration of engine mount because of its excellent performance of canceling narrow band noise. However, in real active dampers, the maximum displacement of damper mass is kinematically restricted. When the control input signal from the FxLMS algorithm exceeds this limitation, the damper mass will collide with the mechanical stops and results in many problems. Originated from these, a modified narrow band FxLMS algorithm based on the equalizer technique with the maximum allowable displacement of active damper mass is proposed in this study. Some simulation results showed that the propose algorithm is effective to suppress vibration of engine mount while ensuring given displacement constraint.

Optimum Design of Engine Mount System Considering Body Flexibility (차체의 유연성을 고려한 엔진마운트 최적설계)

  • 황인수;김태욱;박우선;고병식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.319-325
    • /
    • 1997
  • As customer's demand for vehicle comfort is getting increased, vibration problem is very important issue in vehicle development. Engine is the main factor causing vehicle vibration, so that we should isolate detrimental transmitted excitation from engine. In order to solve this problem engine mounting system was properly optimized. Simulation was performed not only rigid body mode analysis but also flexible body mode analysis. We obtained the optimal locations and stiffness of engine mounts from simulation results, and had reasonable results from considering flexible body mode than only rigid body mode analysis.

  • PDF

Design Sensitivity Analysis of an Engine Mount System using the Multi-Domain FRF-based Substructuring Method (다중 전달함수합성 법을 이용한 엔진마운트 시스템의 설계민감도 해석)

  • 이두호;황우석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.237-244
    • /
    • 2002
  • Analyzing acoustic-structural systems such as automobiles and aircraft, the FRF-based substructuring (FBS) method is one of the most powerful tools. In this paper, a general procedure for the parametric sensitivity analysis of vibro-acoustic problems has been presented using the multi-domain FRF-based substructuring formulation. For an acoustic-structural system sub-structured by multiple domains, the substructuring formulation gives the reaction farces on the interface boundaries. The design sensitivity formula is obtained from the direct differentiation of the reaction force expression with respect to the design vector. As a practical application, the proposed design sensitivity formula is applied to an engine mount system of passenger car. An objective of the problem is to identify the most effective engine mounts and bushes in minimizing the interior noise over the concerned rpm range. The comparison of the sensitivity results with those of the finite difference method shows excellent agreement. In addition, stiffness modifications of the mounts and bushes identified through the design sensitivity analysis lead to a successful decrease of the interior noise. This results show usefulness of the present method very well.

An Optimal Design of the Front Wheel Drive Engine Mount System (전륜구동형 승용차의 엔진마운트 시스템 최적설계)

  • Kim, M.S.;Kim, H.S.;Choi, D.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.74-82
    • /
    • 1993
  • Optimal designs of a 3-point and a 4-point engine mount system are presented for reducing the idle shake of a Front Wheel Drive(FWD) vehicle. Design variables used in this study are the locations, the angles and the stiffness of an engine mount system. The goal of the optimization is minimizing the transmitted force without violating the constraints such as static weight sag, resonant frequency and side limits of design variables. The Augmented Lagrange Multiplier(ALM) Method is used for solving the nonlinear constrained optimization. The generalized Jacobi and the impedence method are employed for a free vibration analysis and a forced response analysis. The trend of analysis results well meet that of the experimental results. The optimization results reveal that the 4-point system transmits less torque than the 3-point system. It is also found from the design sensitivity analysis that the vibration characteristics of the 4-point system is less sensitive than those of the 3-point system.

  • PDF

Vibration Characteristics and Countermeasures of a Transaxle Type Forklift Truck (일체형 동력전달계를 가진 지게차의 진동 특성 규명 및 저감)

  • 김원현;주원호;김승규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.912-918
    • /
    • 2004
  • Main vibration problems of a transaxle type forklift truck are caused by the resonance of engine excitation force and natural mode shade of major components such as engine-mount system, mast, and main frame. But, it is well known that the reduction of vibration is very difficult because of the limitation of structural modifications. In this paper, the vibration characteristics of engine-mast system including engine mount were firstly identified by the experimental and simplified numerical methods. And also, the free and forced vibration characteristics of a whole forklift truck were surveyed with modal test and ODS(operation deflection shape) measurement. Based on these results, the reliable finite element model was developed. Finally, various countermeasures were considered and applied to a real forklift truck and then its effects were confirmed.

  • PDF

The Modelling of vehicle and Applying the Optimal Design Values of Engine Rubber Mounts (차량의 모델링과 엔진마운트 최적설계값의 적용)

  • 박철희;오진우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.129-143
    • /
    • 1998
  • The vibrations of steering wheel are required to be reduced for convenient ride quality and good controllability. This phenomenon, vibration of steering wheel, is occured by interaction with suspension system, steering system, vehicle body, engine/transmission and tire complicately. But reviewing the current research activities, most researches are performed for the vibration analysis of steering wheel with a simple model, and mot easy to be applied to the variation of each component element connected with steering system as well as that of the steering system. In this study, suspension system and steering system are modelled by the T.L.H. coordinate system which is usually used by a passenger car maker. Also, rigid body motions of engine and elastic motions of vehicle body in the previous study are considered. Derive the equation of motion in 29 d.o.f. and the vibration of steering wheel is analyzed numerically and verify the midelling of steering system by comparison with test results for real car. And then, the optimal design values of the engine mount system obtained from the previous study are applied to the verified steering system model and investigate the effects of various engine mount design values on the vibration of steering wheel.

  • PDF

Engine Mounting System Optimization for Improve NVH (NVH 향상을 위한 엔진 설치 시스템 최적화)

  • Kim, Jang-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4665-4671
    • /
    • 2013
  • Engine mounting system is the most responsible system for NVH performance of vehicle. The vibration at idle shake, road shake, Key ON/OFF, gear shift tuned by the engine mount position and stiffness. Previously described Engine mounting system theory investigated and summarized in this paper. Decoupling of the Power train rigid mode and Reducing the angle between Torque-Roll-Axis and Elastic-roll-Axis is starting point of optimization. Multi-optimization analysis was performed because of variety simulation case and FE-model. Eventually, Find the best mount location and the stiffness has improved the performance of the vehicle NVH.

Correlation Analysis of TPA Output Variables in a Pneumatic Active Engine Mount System (공압식 능동형 엔진마운트 시스템의 TPA 출력변수간의 상관관계 분석)

  • Park, Hyeol-Woo;Lee, Jae-Cheon;Choi, Jae-Yong;Kim, Jeong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.46-52
    • /
    • 2012
  • A PAEM(Pneumatic Active Engine Mount) system has been developed to improve NVH performance of a SUV in idle state. Control objective to attenuate the vibration of a vehicle should be determined prior to the design of control algorithm. This study presents the correlation analysis of output variables of PAEM system by means of TPA(Transfer Path Analysis) using experimental data obtained by vehicle test. The analysis results show that the vibration of vertical direction is more serious than those of longitudinal and lateral direction of the vehicle, and that the correlation between the vibration of front seat rail and that of steer wheel is highest. In conclusion, the vibrations of front seat rail and steer wheel in vertical direction should be considered as the control objectives of the PAEM.

The vibration Analysis in Case of Key-off of a Jeep by Using CAD/CAE (CAD/CAE을 이용한 승용 Jeep의 Key-off시 진동 해석)

  • An, Gie-Won;Song, Sang-Kee;,
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.5-13
    • /
    • 1992
  • The vibration of a vehicle, which is caused by and transmitted from the engine, has significant effect on the ride comfort and the dynamic characteristics of the engine mount system has direct influence on the vibration and noise of the vehicle. This paper examines the body shake caused by the engine excitation force on engine key-off of a jeep by experiment and computer simulation using a general purpose mechanical system program, DADS. The computer simulation model consists of the engine, body including frame, and front and rear axles and each axle has right and left tires. The force element between body and suspension is modeled as a combination of suspension spring and damper, and the unsprung mass has roll and pitch motion. The body shake obtained from experiment was compared with the result of computer simulation. Parametric study of the body shake on engine key-off is performed with changing the stiffness of engine mount rubber, the engine mount installation angle and position of engine mounts by using the verified computer simulation model.

  • PDF