• 제목/요약/키워드: Engine intake and compression

검색결과 171건 처리시간 0.026초

점화시기 근방의 고난류 생성을 위한 기초연구 (The Fundamental Study on Generation of High Turbulence at Vicinity of Ignition Timing)

  • 홍재웅;송영식
    • 대한기계학회논문집B
    • /
    • 제20권1호
    • /
    • pp.275-283
    • /
    • 1996
  • The turbulence in the engine cylinder is generated by intake pressure and inertia effects during intake stroke, and is generated and decreased by piston compression effect during the compression stroke. The classified needed to generate high turbulence flow at vicinity of ignition timing. Therefore, A single-shot Rapid Intake Compression Expansion Machine (RICEM), which is able to realize the intake, compression, expansion or intake-compression stroke under high piston speed respectively, was manufactured and evaluated in order to find methods to generate high turbulence at around spark timing. It was found that the characteristics of RICEM such as reapperance, leakage, piston displacement with crank angle was corresponding to those of real engine and RICEM simulates not only high temperature and high pressure field but also flow patterns of the actual engine by increasing of pressure in intake line.

흡입 밸브 각도에 따른 실린더 내 와류 발생 특성 (In-Cylinder Swirl Generation Characteristics according to Intake Valve Angle)

  • 엄인용;박찬준
    • 한국가시화정보학회지
    • /
    • 제3권2호
    • /
    • pp.79-87
    • /
    • 2005
  • Two engines, one is conventional DOHC 4 valve and the other is narrow valve angle, were used to compare the characteristics of swirl motion generation in the cylinder. One intake port is deactivated to induce swirl flow. A PIV (Particle Image Velocimetry) was applied to measure in-cylinder velocity field according to inlet valve angle during intake and compression stroke. The results show that the flow patterns of narrow valve engine are much more stable and well arranged compared with the normal engine over the entire intake and compression stroke except early intake stage, and very strong swirl motion is generated at the end of compression stage in this engine nevertheless using straight port which is unfavorable for swirl generating. In the normal engine, however, strong swirl motion induced during intake stroke is destroyed as the compression progresses.

  • PDF

디젤 엔진 연료 분사 타이밍 구간에서의 흡기 포트 스월비 1D 컴퓨터 시뮬레이션 (1D Computer Simulation of Diesel Engine Intake Port Swirl Ratios Considering the Fuel Injection Timing Range)

  • 오대산;이충훈
    • 한국분무공학회지
    • /
    • 제26권2호
    • /
    • pp.81-87
    • /
    • 2021
  • This study was performed to calculate the swirl ratio of a diesel engine intake port by a 1D computer simulation under actual engine operating conditions. The swirl ratio of the intake port was simulated according to the change of the engine speed during the operation of the motoring without fuel injection. The swirl ratio of the intake port was simulated according to changes in the crank angle during the four-cycle operation of intake, compression, expansion and exhaust. The swirl ratio represented by the three regions of the piston, center and squish was simulated. Among the three regions, the piston-region swirl ratio is important for effective air-fuel mixing in the engine cylinder. In particular, it was confirmed during the simulation that the piston swirl ratio before and after the compression top dead center (TDC) point when fuel is injected in the DI diesel engine can have a significant effect on the mixing of air and fuel. It was desirable to set the average piston swirl ratio over a crank angle section before and after compression TDC as the representative swirl ratio of the cylinder head intake port according to the change of the engine speed.

EXPERIMENTAL STUDY ON THE STRATIFIED COMBUSTION CHARACTERISTICS ACCORDING TO COMPRESSION RATIO AND INTAKE TEMPERATURE IN A DIG ENGINE

  • Lee, C.H.;Lee, K.H.
    • International Journal of Automotive Technology
    • /
    • 제7권6호
    • /
    • pp.675-680
    • /
    • 2006
  • In the direct injected gasoline engine, atomized spray is desired to achieve efficient mixture formation needed to good engine performance because the injection process leaves little time for the evaporation of fuels. Therefore, substantial understanding of global spray structure and quantitative characteristics of spray are decisive technology to optimize combustion system of a GDI engine. The combustion and emission characteristics of gasoline-fueled stratified-charge compression ignition(SCCI) engine according to intake temperature and compression ratio was examined. The fuel was injected directly to the cylinder under the high temperature condition resulting from heating the intake port. With this injection strategy, the SCCI combustion region was expanded dramatically without any increase in NOx emissions, which were seen in the case of compression stroke injection. Injection timing during the intake temperature was found to be an important parameter that affects the SCCI region width. The mixture stratification and the fuel reformation can be utilized to reduce the required intake temperature for suitable SCCI combustion under each set of engine speed and compression ratio conditions.

저속 디젤기관에서 흡기밸브 닫힘시기 지연시 고팽창 실현을 위한 열효율 특성 (A Chancteristic of Thermal Efficiency in Order to High Expansion Realization with a Retard of Intake Valve Closing Time in the Low Speed Diesel Engine)

  • 장태익
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.42-49
    • /
    • 2006
  • In this research. the diesel cycle was thermodynamically interpreted to evaluate the possibility of high efficiency by converting diesel engines to the high expansion diesel cycle, and general cycle features were analyzed after comparing these two cycles. Based on these analyses. an experimental single cylinder a long stroke with high expansion-diesel engine. of which S/B ratio was more than 3, was manufactured. After evaluating the base engine through basic experiments, a diesel engine was converted into the high expansion diesel engine by establish VCR device and VVT system Accordingly, the high expansion diesel cycle can be implemented when the quantity of intake air is compensated by supercharge and the effective compression ratio is maintained at its initial level through the reduction of the clearance volume. In this case, heat efficiency increased by $5.0\%$ at the same expansion-compression ratio when the apparent compression ratio was 20 and the fuel cut off ratio was 2. As explained above, when the atkinson cycle was used for diesel cycle, heat efficiency was improved. In order to realize high expansion through retarding the intake value closing time, the engine needs to be equipped with variable valve timing equipment, variable compression ratio equipment and supercharged pressure equipment. Then a high expansion diesel cycle engine is realized.

SCCI 방법을 이용한 직분식 가솔린 엔진내의 압축비 및 흡기 온도 변화에 따른 연소 및 배기 특성에 관한 실험적 연구 (An Experimental Study on the Combustion and Emission Characteristics According to the Variation of Compression Ratio and Intake Temperature Using Stratified Charge Compression Ignition in a Gasoline Direct Injection Engine)

  • 이창희;이기형;임경빈
    • 대한기계학회논문집B
    • /
    • 제30권6호
    • /
    • pp.538-545
    • /
    • 2006
  • Stratified charge compression ignition (SCCI) combustion, also known as HCCI(homogeneous charge compression ignition), offers the potential to improve fuel economy and reduce emission. In this study, SCCI combustion was studied in a single cylinder gasoline DI engine, with a direct injection system. We investigated the effects of air-fuel ratio, intake temperature and injection timing such as early injection and late injection on the attainable SCCI combustion region. Injection timing during the intake process was found to be an important parameter that affects the SCCI region width. We also find it. The effects of mixture stratification and fuel reformation can be utilized to reduce the required intake temperature for suitable SCCI combustion under each set of engine speed and compression ratio conditions.

직분식 디젤엔진에서 엔진 매개변수들이 NO 및 soot 배출에 미치는 영향에 대한 수치해석 연구 (Parametric Study for Reducing NO and Soot Emissions in a DI Diesel Engine by Using Engine Cycle Simulation)

  • 함윤영;전광민
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.35-44
    • /
    • 2002
  • Engine cycle simulation using a two-zone model was performed to investigate the effect of the engine parameters on NO and soot emissions in a DI diesel engine. The present model was validated against measurements in terms of cylinder pressure, BMEP, NO emission data with a 2902cc turbocharger/intercooler DI diesel engine. Calculations were made for a wide range of the engine parameters, such as injection timing, ignition delay, Intake air pressure, inlet air temperature, compression ratio, EGR. This parametric study indicated that NO and soot emissions were effectively decreased by increasing intake air pressure, decreasing inlet air temperature and increasing compression ratio. By retarding injection timing, increasing ignition delay and applying EGR. NO emission was effectively reduced, but the soot emission was increased.

흡기밸브 닫힘 시기와 분사조건이 PCCI 엔진의 성능에 미치는 영향에 관한 연구 (A Study on Effect of the Intake Valve Timing and Injection Conditions on the PCCI Engine Performance)

  • 이재현;김형민;김영진;이기형
    • 한국분무공학회지
    • /
    • 제15권1호
    • /
    • pp.1-7
    • /
    • 2010
  • As world attention has focused on global warming and air pollution, high efficiency diesel engines with low $CO_2$ emissions have become more attractive. Premixed diesel engines in particular have the potential to achieve the more homogeneous mixture in the cylinder which results in lower NOx and soot emission. Early studies have shown that the operation conditions such as the EGR, intake conditions, injection conditions and compression ratio are important to reduce emissions in a PCCI (Premixed Charge Compression Ignition) engine. In this study a modified cam was employed to reduce the effective compression ratio. While opening timing of the intake valve was fixed, closing timing of the intake valve was retarded $30^{\circ}$. Although Atkinson cycle with the retarded cam leads to a low in-cylinder pressure in the compression stroke, the engine work can still be increased by advanced injection timing. On that account, we investigated the effects of various injection parameters to reduce emission and fuel consumption; as a result, lower NOx emission levels and almost same levels of fuel consumption and PM compared with those of conventional diesel engine cam timing could be achieved with the LIVC system.

가솔린직접분사기관에서 흡기포트 및 피스톤의 형상에 따른 유동해석 (Numerical Analysis of the flow Characteristics in Intake-Port Piston Head Configurations in a Gasoline Direct-Injection Engine.)

  • 박찬국;박형구;임명택
    • 한국전산유체공학회지
    • /
    • 제4권3호
    • /
    • pp.21-27
    • /
    • 1999
  • In this paper, tile characteristics of flow resulting from the configurations of piston head and intake-port of the cylinder in a gasoline-direct-injection engine are investigated numerically. Calculations are carried out from intake process to the end of compression. GTT code which includes the third order upwind Chakravarthy-Osher TVD scheme and κ-ε turbulence model with the law of wall as a boundary condition. As a result, a piston head with a smaller radius of curvature and larger radius gives stronger reverse tumble. It is also shown that as the maximum tumble ratio increases by the configuration of the intake-port the tumble ratio at the end of compression stroke increases. It is concluded that flows at the end of compression stroke can be controlled by the optimum design of intake-port and piston head.

  • PDF

균질혼합압축점화기관의 배출가스특성에 관한 연구 (A Study on the Emissions of Homogeneous Charge Compression Ignition Engine)

  • 한성빈;최경호
    • 대한기계학회논문집B
    • /
    • 제28권3호
    • /
    • pp.324-329
    • /
    • 2004
  • As a new concept in engines and a power source for future automotive applications, the HCCI(Homogeneous Charge Compression Ignition) engine has been introduced. Essentially a combination of spark ignition and compression ignition engines, the HCCI engine exhibits low NO$_x$ and PM emissions as well as high efficiency under part load. In this research, a 4 cylinder diesel engine was converted into a HCCI engine, and propane was used as the fuel. The main parameters for this research are fuel flow rate and the temperature of the intake manifold, and the effects of such on a HCCI engine's performance and exhaust was investigated.