• Title/Summary/Keyword: Engine control room

Search Result 71, Processing Time 0.022 seconds

An Implementation of Lighting Control System using Interpretation of Context Conflict based on Priority (우선순위 기반의 상황충돌 해석 조명제어시스템 구현)

  • Seo, Won-Il;Kwon, Sook-Youn;Lim, Jae-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.17 no.1
    • /
    • pp.23-33
    • /
    • 2016
  • The current smart lighting is shaped to offer the lighting environment suitable for current context, after identifying user's action and location through a sensor. The sensor-based context awareness technology just considers a single user, and the studies to interpret many users' various context occurrences and conflicts lack. In existing studies, a fuzzy theory and algorithm including ReBa have been used as the methodology to solve context conflict. The fuzzy theory and algorithm including ReBa just avoid an opportunity of context conflict that may occur by providing services by each area, after the spaces where users are located are classified into many areas. Therefore, they actually cannot be regarded as customized service type that can offer personal preference-based context conflict. This paper proposes a priority-based LED lighting control system interpreting multiple context conflicts, which decides services, based on the granted priority according to context type, when service conflict is faced with, due to simultaneous occurrence of various contexts to many users. This study classifies the residential environment into such five areas as living room, 'bed room, study room, kitchen and bath room, and the contexts that may occur within each area are defined as 20 contexts such as exercising, doing makeup, reading, dining and entering, targeting several users. The proposed system defines various contexts of users using an ontology-based model and gives service of user oriented lighting environment through rule based on standard and context reasoning engine. To solve the issue of various context conflicts among users in the same space and at the same time point, the context in which user concentration is required is set in the highest priority. Also, visual comfort is offered as the best alternative priority in the case of the same priority. In this manner, they are utilized as the criteria for service selection upon conflict occurrence.

A Case Study on the Passengers' Evacuation Times according to the Fire Smoke Density On a Ship (선박 화재 시 선내의 연기농도가 승객의 피난시간에 미치는 영향)

  • Hwang, Kwang-Il;Shin, Dong-Keol;Kim, You-Jin;Youn, Jeong-Ha;Lee, Sang-Il;Hong, Won-Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.336-343
    • /
    • 2009
  • Because ships are very isolated and independent objects when sailing on the ocean, if a fire and smoke occurs, nobody can be sure to escape safely from ship at the moment. On the focus of the relationship between the sight transmissivity by fire smoke density and the life safety, this study performs simulations and experiments, respectively. To evaluate the theoretical evacuation time, CFAST software which is known as a 2 zone model analysis tool is used, and the result is 54 seconds from ECR(Engine Control Room) exit to upper deck exit and 34 seconds from bosun store to upper deck exit. And totally 12 types of experiments are performed with other 10 persons per experiment. As the result, it is cleared that the low sight transmissivity leads to the low life safety and the obstruction which can be happen unexpectedly on the evacuation way on fire makes it worse. At the condition of the smoke density 0%, over 90% people arrive at upper deck exit safely. But with the transmissivity of 8%, 70%(from ECR) and 30%(from bosun store) among experiment persons of each can survive, and with same density and unexpected obstruction, the survival ratio goes down to only 20% and 10%.

A Study on the Industrial Type SFF System using SLS Proecss (SLS 공정을 이용한 산업용 임의형상 제작시스템에 관한 연구)

  • 김동수;임현의;김성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1299-1302
    • /
    • 2004
  • A real object duplication system (RODS), including three dimensional (3D) scanner and solid freeform fabrication system (SFFS), is a device to make three-dimensional objects directly from the drawing or photo data. A Selective Multi-Laser Sintering (SMLS) process designed in this paper is by which computer images received using 3D scanner are built up from polymer powder on building room of large size using dual laser at industrial type SFF system. Using the process can rapidly produce real object duplication components of industrial type such as cylinder, engine block, chassis of automobile, etc. In this paper, the industrial type SFF system using SMLS process is manufactured and the system is satisfied with high precision and high speed processing technique. To research characteristics of each part for theindustrial type SFF system, a structure and thermal analysis and test of each part is carried out. Also, to achievement of high performance for industrial type SFF system, design and fabrication for the structure, heater, nitrogen supply, laser and control part are carried out.

  • PDF

A Study on the Optimal Design for Lightweight Vehicle Dash (차량 경량화를 위한 최적설계에 관한 연구)

  • Lee, Gyung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.14-20
    • /
    • 2020
  • Currently, the automotive market is intensively researching eco-friendly vehicles such as EV vehicles and hydrogen vehicles. Further, research and developments for the future markets such as autonomous vehicles and the connective cars are coped up continuously along with the rising fuel economy regulations and the emission regulations. In this development, various sensors, batteries, and control devices are fused in order to decrease the weight of the vehicle. Moreover, since the fuel economy regulation is an issue, research on the weight reduction of body parts is underway. Therefore, in this work, a study is conducted to obtain the optimal design of the Dash part that separates the engine room and the passenger seat of the vehicle body by combining lightweight materials with high rigidity materials. The optimal design was obtained using the Finite Element Analysis. Further, AL5083 was used as the lightweight material and ASBC1470 was used for high strength materials. The parts made with this combination of materials had strength equivalent to that of the existing steel and the weight was reduced by 10%.

Evaluation of Corrosion Characteristics on Welding Zone of Leakage SeawaterPipe Welded by Underwater Welding Electrode (수중 용접봉으로 용접한 누수배관 용접부위의 부식 특성 평가)

  • Moon, Kyung-Man;Lee, Sung-Yul;Kim, Yun-Hae;Lee, Myung-Hyoon;Kim, Jin-Gyeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1240-1247
    • /
    • 2008
  • Leakage trouble on the sea water pipeline in engine room is often resulted from a localized corrosion due to severe corrosive environment caused by both high speed and high pressure of sea water flowing through the inner pipe. In addition, when the ship is in stand-by or emergency condition, underwater welding to control the leakage of sea water from a hole of its pipe is very important in an industrial safety point of view. In this study possibility of underwater welding to control leakage of sea water and corrosion property of its welding zone were investigated with the electrochemical methods by parameters of welding methods and welding electrodes when underwater welding is achieved with a such case that sea water is being leaked out with a height at 50mm from a hole of $2.5mm{\emptyset}$ of test pipe. Corrosion resistance of weld metal zone is better than the base metal and its hardness is higher than that of the base metal. However corrosion potential of weld metal zone showed a negative value than that of the base metal, therefore weld metal zone is preferentially corroded rather than the base metal by performance of galvanic cell due to difference of corrosion potential between weld metal zone and base metal. Eventually it is suggested that leakage of sea water is successfully controlled by underwater welding,

Flow Characteristics in the Downstream Region of a Butterfly Valve with Various Disk Opening Angle (디스크 회전각에 따른 버터플라이 밸브 하류에서의 유동특성)

  • Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.4 s.27
    • /
    • pp.267-272
    • /
    • 2006
  • Butterfly valves have been used for shut-off and throttling-control application in many industrial fields. Recently, they are frequently used for cooling water, oil system and ballast piping system of many larger vessels. They are especially suited for flow throttling control of heat exchangers in engine room. Measurement by the PIV(Particle Image Velocimetry) was conducted to investigate the flow characteristics of butterfly valve inserted within circular pipe. Flow behaviors such as instantaneous and time-mean velocity vectors are investigated. Furthermore, to reveal systematic performance of the butterfly valve, wall pressure was measured at 6 points along the pipe by digital manometer. As the valve position moves to the closed side, flow separation increases and persists its tendency downstream until smoothly uniform flow developed. The pressure loss is found to be about zero for the disk open angles less than 45 degrees, but is substantially increased for those larger than 60 degrees.

  • PDF

Effect of Varying Excessive Air Ratios on Nitrogen Oxides and Fuel Consumption Rate during Warm-up in a 2-L Hydrogen Direct Injection Spark Ignition Engine (2 L급 수소 직접분사 전기점화 엔진의 워밍업 시 공기과잉률에 따른 질소산화물 배출 및 연료 소모율에 대한 실험적 분석)

  • Jun Ha;Yongrae Kim;Cheolwoong Park;Young Choi;Jeongwoo Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.52-58
    • /
    • 2023
  • With the increasing awareness of the importance of carbon neutrality in response to global climate change, the utilization of hydrogen as a carbon-free fuel source is also growing. Hydrogen is commonly used in fuel cells (FC), but it can also be utilized in internal combustion engines (ICE) that are based on combustion. Particularly, ICEs that already have established infrastructure for production and supply can greatly contribute to the expansion of hydrogen energy utilization when it becomes difficult to rely solely on fuel cells or expand their infrastructure. However, a disadvantage of utilizing hydrogen through combustion is the potential generation of nitrogen oxides (NOx), which are harmful emissions formed when nitrogen in the air reacts with oxygen at high temperatures. In particular, for the EURO-7 exhaust regulation, which includes cold start operation, efforts to reduce exhaust emissions during the warm-up process are required. Therefore, in this study, the characteristics of nitrogen oxides and fuel consumption were investigated during the warm-up process of cooling water from room temperature to 88℃ using a 2-liter direct injection spark ignition (SI) engine fueled with hydrogen. One advantage of hydrogen, compared to conventional fuels like gasoline, natural gas, and liquefied petroleum gas (LPG), is its wide flammable range, which allows for sparser control of the excessive air ratio. In this study, the excessive air ratio was varied as 1.6/1.8/2.0 during the warm-up process, and the results were analyzed. The experimental results show that as the excessive air ratio becomes sparser during warm-up, the emission of nitrogen oxides per unit time decreases, and the thermal efficiency relatively increases. However, as the time required to reach the final temperature becomes longer, the cumulative emissions and fuel consumption may worsen.

An Experimental Study on the Development of a Cabin Noise Reduction System for Improving Ship Habitability (선박 거주성 향상을 위한 선실 소음 저감 시스템 개발에 관한 실험적 연구)

  • Young-Choul Seo;Deug-Bong Kim;Chol-Seong Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.620-627
    • /
    • 2023
  • Ship noise is one of the important factors for the living and health of seafarers, and ef orts to reduce ship noise are actively underway. There are two methods of noise reduction: passive noise Control (PNC) and active noise control (ANC). Unlike cars and airplanes, ANC is not widely used for noise reduction on ships. This study aimed to reduce the noise generated in the engine room by using soundproof panels and high-frequency vibration generators, as well as active noise control (ANC). For this purpose, an experimental model was made using an acrylic box, and the noise reduction effect was measured under four conditions. The experimental results are as follows: First, the soundproof panel had a noise reduction effect in all ranges from 55 dB to 85 dB. In the case of using a high-frequency vibration generator, there was no ef ect in the low noise range such as 55 dB(A), but there was a noise reduction effect in the high noise range such as 70.8 dB(A) and 85 dB(A).Second, when the soundproof panel and the high-frequency vibration generator were used simultaneously, the noise reduction ef ect was up to -2.2 dB(A). The results of this experiment were obtained from an experimental model made of acrylic, and they may be different from actual ships made of steel plate. In future studies, we plan to experiment using iron plate (considering the material, thickness, and structure) used in actual ships. We hope that this study will help to improve the living environment and health of seafarers on ships.

Cooling Performance Deficiency of Air Conditioning System According to Air Quantity Included in Refrigerant (냉매 내 공기혼입에 따른 에어컨 시스템의 냉각성능 저하)

  • Moon, Seong-Won;Min, Young-Bong;Chung, Tae-Sang
    • Journal of Biosystems Engineering
    • /
    • v.34 no.6
    • /
    • pp.470-475
    • /
    • 2009
  • This study was performed to present the diagnosis basis of cooling performance deficiency according to air quantity included in refrigerant of air-conditioner by detecting the temperatures and pressures of refrigerant pipeline. The car air-conditioner of SONATA III (Hyundai motor Co., Korea) was tested by maximum cooling condition at 1500 rpm of engine speed in the room with controlled air condition at $33\sim35^{\circ}C$ and 55~57% RH. Measured variables were temperature differences between inlet and outlet pipe surface of the compressor (Tcom), condenser (Tcon), receive dryer (Trec) and evaporator (Teva), and high pressure (HP) and low pressure (LP) in the refrigerant pipeline, and temperature difference (Tcoo) between inlet and outlet air of the cooling vent of evaporator. Control variables were the refrigerant charging weight and the vacuum degree in the refrigerant pipeline before charging refrigerant. From the test, it was represented that the measuring values of (Tcom), LP and (Tcoo) were enabled to make the diagnosis of cooling performance deficiency according to quantity included in refrigerant of air-conditioner. The ranges of Tcom, LP and Tcoo to make the diagnosis of cooling performance deficiency were respectively less than $55^{\circ}C$, more than 166.7 kPa-g(1.7 kgf/$cm^2$) and less than $13.7^{\circ}C$. In the case of using only external sensors and the condition under the normal performances of air conditioner, it was considered that the ranges of LP and Tcoo to make the diagnosis of cooling performance deficiency were respectively more than 166.7 Pa and less than $12^{\circ}C$.

Developing a first-person horror game using Unreal Engine and an action camera perspective (언리얼엔진과 액션 카메라 시점을 활용한 1인칭 공포 게임 개발)

  • Nam-Young Kim;Young-Min Joo;Won-Whoi Huh
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.75-81
    • /
    • 2024
  • This paper focuses on developing a first-person 3D game to provide extreme fear to players through realistic camera direction utilizing the features of action cameras. As a new camera production technique, we introduce perspective distortion using a wide-angle lens and camera shake when moving to provide higher immersion than existing games. The theme of the game is horror room escape, and the player starts with a firearm, but in order to overcome the concern that the game's difficulty is low due to the use of firearms, the player is asked to control the use of firearms by imposing burdens such as chasing monsters and reducing the number of magazines. The significance of this paper is that we developed a new type of 3D game that maximizes the fear effect of players through realistic production.