• Title/Summary/Keyword: Engine control Unit

Search Result 150, Processing Time 0.025 seconds

A Flame Study of Soot Deposition and Reentrainment in Application to Control of Diesel Soot Emission (디젤엔진 관련 Soot 부착 및 재유입에 관한 화염에서의 연구)

  • Kim, Seong-Geun;Park, Jong-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2626-2636
    • /
    • 1996
  • A study of soot deposition and reentrainment was carried out both theoretically and experimentally to understand behavior of soot formed by incomplete combustion in a diesel engine. Theoretically, soot deposition on engine cylinder wall and/or piston head was studied with a stagnation point flow approximation. Soot reentrainment occurred upon exhaust gas blowdown was also studied by assuming a long-normal shear velocity distribution. Experimentally, a LPG$O_2/N_2$ flame impinging on a disk, produced by a concentric tubular burner, was chosen as deposition configuration and a shear flow unit with compressed air was installed for the study of reentrainment. For selected flame configuration, soot deposition measurements were conducted and showed that the dominant deposition mechanism was thermophoresis. Distributions of gas temperature and soot number density were estimated by combining data obtained by a B-type thermocouple with a thermophoretic transport theory. Disk temperature distributions were directly measured using a K-type thermocouple. Soot size and morphology were estimated from a TEM photograph. Ratios of soot deposit to reentrained amount were measured for a wide range of shear flow velocities, which showed that the reentrainment model was reasonable.

Study of real-time OS structure that use OSEK/VDX (OSEK/VDX이용한 실시간 OS 구조에 관한 연구)

  • Oh, Chang-Yeon;Jang, Kyung-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.861-865
    • /
    • 2009
  • Technical development in car has utilized electronic controls (ECU, Electronic Control Unit) recently if was achieved machine such as engine performance in priority and electronic side technical development that improve safety, convenience, expense etc. is proceeded vigorously. Also, preference of consumers for car is various model's number according to change at the fast speed and complexity of software required from vanguard service development was increased greatly. Software development expense dominated considerable weight in car manufacture expense by such change and automakers established OSEK/VDX that is standard of automobile embeded system to reuse application software by module to respond this and transplant easily to other control device. Do when search about all item that is necessary in real-time OS structure that examines OSEK/VDX standard that is presented as the alternative to respond environment that change rapidly that refer in dignified mien after it is original, and uses actuality OSEK/VDX.

  • PDF

A Study on the Risk Assessment Case Analysis of LNG Fuelled Ships for Emission Control (배기가스 규제 대응을 위한 LNG연료추진선박의 HAZID 사례 분석에 관한 연구)

  • Lee, Yoon-Hyeok;Shao, Yu-De;Kim, You-Taek;Jung, Jin-Won;Kang, Ho-Keun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.162-163
    • /
    • 2018
  • A risk assessment is performed at the initial design stage of LNG-fuelled ships subject to new fuel supply systems due to marine environmental and emissions regulations. Risk assessment involves a series of logical steps that enable systematic risk analysis and evaluation. LNG-fuelled ships mainly consist of a tank for storing LNG, a gas supply unit for supplying LNG to the engine, an engine using LNG as fuel, and a bunkering manifold for receiving LNG. The components of the LNG fuelled ship are determined according to the characteristics, size, rout, and operating distance. Therefore, the risk factors of each ships are different, and the risk analysis also changes. In this study we consider the systems of ships using LNG as a fuel and analyze the risk assessment of certain cases where the actual risk assessment has been carried out.

  • PDF

TRANSFER ORBIT THERMAL ANALYSIS FOR COMS (통신해양기상위성의 전이궤도 열해석)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Kim, Sung-Hoon;Yang, Koon-Ho
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.48-54
    • /
    • 2008
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and has been developing by KARI for communication, ocean and meteorological observations. It will be launched by ARIANE 5. Ka-band components are installed on South panel, where single solar array wing is mounted. Radiators, embedded heat pipes, external heat pipe, insulation blankets and heaters are utilized for the thermal control of the satellite. The Ka-band payload section is divided several areas based on unit operating temperature in order to optimize radiator area and maximize heat rejection capability. Other equipment for sensors and bus are installed on North panel. The ocean and meteorological sensors are installed on optical benches on the top floor to decouple thermally from the satellite. During the transfer orbit operation, satellite will be under severe thermal environments due to low dissipation of components, satellite attitudes and LAE(Liquid Apogee Engine) firing. This paper presents temperature and heater power prediction and validation of thermal control design during transfer orbit operation.

TRANSFER ORBIT THERMAL ANALYSIS FOR SATELLITE (위성의 전이궤도 열해석)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Kim, Sung-Hoon;Yang, Koon-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.227-231
    • /
    • 2007
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and has been developing by KARI for communication and ocean and meteorological observations. It will be launched by ARIANE 5. Ka-band components are installed on South panel, where single solar array wing is mounted. Radiators, embedded heat pipes, external heat pipe, insulation blankets and heaters are utilized for the thermal control of the satellite. The Ka-band payload section is divided several areas based on unit operating temperature in order to optimize radiator area and maximize heat rejection capability. Other equipment for sensors and bus are installed on North panel. The ocean and meteorological sensors are installed on optical benches on the top floor to decouple thermally from the satellite. During the transfer orbit operation, satellite will be under severe thermal environments due to low dissipation of components, satellite attitudes and LAE(Liquid Apogee Engine) firing. This paper presents temperature and heater power prediction and validation of thermal control design during transfer orbit operation.

  • PDF

A Simple Undeland Snubber Circuit for Flying Capacitor 3-level Inverter

  • Kim In-Dong;Nho Eui-Cheol;Lee Min-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.281-285
    • /
    • 2001
  • This paper proposes a snubber circuit for flying capacitor multilevel inverter and converter. The proposed snubber circuit makes use of Undeland snubber as basic snubber unit. It has such an advantage of Undeland snubber used in the two-level inverter. Compared with conventional RLD/RCD snubber for multilevel inverter and converter, the proposed snubber keeps such good features as fewer number of components, reduction of voltage stress of main switching devices due to low overvoltage, and improved efficiency of system due to low snubber loss. In this paper. the proposed snubber is applied to three-level flying capacitor inverter and its feature is demonstrated by computer simulation and experimental result.

  • PDF

Motohawk ECU에 의한 가솔린기관의 연료분사제어 연구

  • Lee, Tong-Won;Jo, Jeong-Kwon
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.279-282
    • /
    • 2009
  • Motohawk ECU(Engine Control Unit)에 의한 가솔린기관의 연료분사제어 알고리즘 연구를 통하여 연비를 절감할 수 있는 방안을 연구한다. 실제 차량엔진 ECU는 캘리브레이션 이외의 제어 알고리즘을 변경하여 구현하기가 쉽지 않으므로 상기의 프로토타입 ECU를 활용하여 연료분사제어 로직을 변경해가면서 연료분사와 관련된 여러가지 파라메터의 연구가 가능하다. 또한 프로그래밍은 Matlab과 Simulink로 구현할 수 있어서 최적연비를 얻기 위한 로직의 구현을 실시간으로 할 수 있으며 차량의 특성상 프로그램의 임베딩이 가능하여야 하므로 이러한 목적에 프로토타입 ECU에 의한 로직개발은 많은 장점이 있다. 이러한 ECU를 활용하여 여러 가지 제어 변수에 의한 최적화된 연료분사 로직의 설계 및 미치는 영향을 평가한다.

  • PDF

Vibration Design and Analysis of Plastic Intake Manifold (플라스틱 흡기다지관의 진동설계 및 해석)

  • 허승진;김찬민;정영섭;이선석;김진우
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.166-172
    • /
    • 1998
  • In contrast to the conventional intake manifold of steel or aluminum material, the lst natural frequency range of plastic intake manifold becomes very lower to ca. 40Hz. That causes negative effects on the engine control unit installed inside the throttle body. In this paper, support design concepts to increase the natural frequency range larger than max. 200Hz are suggested based on the vibration analysis results using finite-element method. In conclusion, it is shown that the vibration level can be reduced most effectively by the installation of the neck support bracket between the throttle body and the plenum chamber.

  • PDF

An Experimental Study of the Effects of Water Vapor in Intake Air on Comvustion and knock Characteristics in a Spark Ignition Engine (흡기중 수증기 함량이 스파크 점화기관의 연소 및 노킹에 미치는 영향에 관한 실험적 연구)

  • 이택헌;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.205-212
    • /
    • 1998
  • In this study, the effects of water vapor in inlet air on combustion efficiency, general performance, knock characteristics and emission gas concentration were investig- ated through the experiments of combustion and vibration analyses, emission gas analysis by changing water vapor quantity in inlet air with temperature and humidity auto control unit. With partial vapor pressure increase, the brake torque at wide open throttle status decreased and the average ignition delay angle increased, IMEP (indicated mean effective pressured using the integral and 3rd derivatives of filtered cylinder pressure as knock intensity, which matched well with the method of frequency power spectrum of block vibration signal. Water vapor in intake air had influence on the spark knock sensitivity. With the increase of water vapor content in intake air NOx emission was decreased and HC emission was increased.

  • PDF

Trend of Diesel Multiple Unit from the viewpoint of propulsion system (동력장치를 중심으로 한 디젤동차의 개발 동향)

  • Ryoo Hyeon-Gyoo;Eun Jung-Il;Choi Seong-Wook;Hwang Jin-Taek
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1021-1027
    • /
    • 2005
  • The Diesel Multiple Units (DMU) is a successful mass transportation system, that is being, continuously, on demand by train operators and railway authorities around the globe. One of its advantages is the fact that a diesel engine, along with the correct propulsion and control equipment, could also be used on either Electrified or Non-Electrified Railway Lines. Currently, there are almost 12,000 DM Units being used worldwide and the demand is on the increase. This paper describes the special features as well as the advantages/disadvantages of the different types of the DMUs according to the propulsion systems that are employed, to help establish a trend in the DMU market.

  • PDF