• Title/Summary/Keyword: Engine clutch

Search Result 99, Processing Time 0.021 seconds

A Study on the Improvement of the Shift Characteristics of the Passenger Car Automatic Transmission (승용차용 자동변속기의 변속특성향상에 관한 연구)

  • 조한상;장욱진;박진호;임원석;박영일;이장무
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.91-105
    • /
    • 1999
  • Dynamic simulation techniques are developed to analyze the shift characteristics of vehicle powertraisn with automatic transmission. In this study, the mathematical modeling of powertrain components such as engine , clutch system, planetary gear system and road load , is presented for the simulation. The clutch engagement condition, which determines the degree of freedom for the system, is also proposed .By using a detailed nonlinear model of torque converter, it is possibile to accurately analyze the extremely transient state such as the shift. Dynamo-based experiments are carried out to prove the validity of the proposed simulation techniques. Using the developed simulation program, the effects of the dynamic design variables and the control conditions , focused on the shift, are evaluated to improve the driving comforability.

  • PDF

A Study on Multi Pass Transmission System for a Flywheel Hybrid Vehicle (플라이휘일 하이브리드 차량의 다경로 동력전달장치 연구)

  • 송한림;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.106-116
    • /
    • 1997
  • In this paper, using MATLAB SIMULINK, a generalized design methodology was suggested for multi pass transmission(MPT) by classifying the vehicle power train as prime mover, MPT and vehicle dynamics. This approach enables a designer to investigate the influence of each transmission component by simple combination of system components without changes of overall program. Using the design methodology, a MPT consisting of CVT, 2, clutches and reduction gears was designed for a braking energy regenerative flywheel hybrid vehicle. The CVT is essential in order to connect the engine and flywheel speed with the vehicle speed. For the purpose of smooth clutch operation, control algorithm was suggested by introducing dead zone for the clutch engagement. Using the SIMULINK model, performance of the flywheel hybrid vehicle with MPT was investigated. It was observed from the simulation results that the MPT vehicle showed better fuel economy, 47% than that of AT vehicle, 27% than that of CVT vehicle for ECE-15 driving cycle. Especially destinct fuel efficiency improvement was obtained for city driving cycle requiring more frequent stop and start.

  • PDF

Root cause analysis of sticking in hydraulically actuated multi-disc friction clutch for ship propulsion (선박 추진용 유압작동식 다판 마찰클러치 고착현상 고장탐구)

  • Jeong, Sang-Hu;Kim, Jeong-Ryeol;Shin, Jae-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.330-336
    • /
    • 2017
  • This study performs a root cause analysis of the sticking that occurs in the hydraulically actuated wet type multi-disc friction clutch in a ship's diesel engine propulsion system that uses rubber elastic coupling. The fishbone method was used to study the sticking through dismantling investigation of the reduction gear and clutch, investigation of the components, and onboard system tests including nondestructive testing. The friction plate sticking is caused by the slip due to friction heat resulting from the leakage of control oil through cracks in the assembled hollow shaft. The friction plate cooling oil also leaks simultaneously through the crack, and partial sticking occurs due to the hot spots in the friction plates. These are caused by insufficient amount of cooling oil due to oil leakage.

Performance Evaluation of a Driving Power Transmission System for 50 kW Narrow Tractors

  • Hong, Soon-Jung;Ha, Jong-Kyou;Kim, Yong-Joo;Kabir, Md. Shaha Nur;Seo, Young Woo;Chung, Sun-Ok
    • Journal of Biosystems Engineering
    • /
    • v.43 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • Purpose: The development of compact tractors that can be used in dry fields, greenhouses, and orchards for pest control, weeding, transportation, and harvesting is necessary. The development and performance evaluation of power transmission units are very important when it comes to tractor development. This study evaluates the performance of a driving power transmission unit of a 50 kW multi-purpose narrow tractor. Methods: The performance of the transmission and forward-reverse clutch, which are the main components of the driving power transmission unit of multi-purpose narrow tractors, was evaluated herein. The transmission performance was evaluated in terms of power transmission efficiency, noise, and axle load, while the forward-reverse clutch performance was evaluated in terms of durability. The transmission's power transmission efficiency accounts for the measurement of transmission losses, which occur in the transmission's gear, bearing, and oil seal. The motor's power was input in the transmission's input shaft. The rotational speed and torque were measured in the final output shaft. The noise was measured at each speed level after installing a microphone on the left, right, and upper sides. The axle load test was performed through a continuous equilibrium load test, in which a constant load was continuously applied. The forward-reverse clutch performance was calculated using the engine torque to axle torque ratio with the assembled engine and transmission. Results: The loss of power in the transmission efficiency test of the driving power unit was 6.0-9.7 kW based on all gear steps. This loss of horsepower was equal to 11-18% of the input power (52 kW). The transmission efficiency of the driving power unit was 81.5-89.0%. The noise of the driving power unit was 50-57 dB at 800 rpm, 70-77 dB at 1600 rpm, and 76-83 dB at 2400 rpm. The axle load test verified that the input torque and axle revolutions were constant. The results of the forward-reverse clutch performance test revealed that hydraulic pressure and torque changes were stably maintained when moving forward or backward, and its operation met the hydraulic design standards. Conclusions: When comprehensively examined, these research results were similar to the main driving power transmission systems from USA and Japan in terms of performance. Based on these results, tractor prototypes are expected to be created and supplied to farmhouses after going through sufficient in-situ adaptability tests.

The Study on Operability Improvement of the start motor for Auxiliary Power Unit of Rotorcraft (회전익 항공기 보조동력장치 시동모터 운용성 개선연구)

  • Lee, Gwang-Eun;Kang, Byoung-Soo;Na, Seong-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.774-780
    • /
    • 2021
  • The auxiliary power unit (APU) of a rotorcraft starts the engine during operation/flying. The APU is composed of a gas turbine engine type. The starting principle of the component is that the electric start motor generates the power required for starting by rotating the shaft. In this study, quality improvement was performed by applying an over-running clutch (ORC) between the APU and the starter motor to secure the operability of the starter motor of the APU mounted on the rotorcraft. The starter motor has the main role of starting the APU, but during operation, it is rotated without load by the rotational force of the APU gear shaft, resulting in friction at the brush. This phenomenon causes abrasion of the brush of the starter motor. Consequently, when the APU operation time increases, the brush life decreases, and the operability of the APU is affected. In this study, an ORC that separates the interlocking between the start motor brush abrasion and the APU operation time was applied to improve the operability/durability of the APU starter motor. The effect was verified through a test, and the technical feasibility of the design change was analyzed.

Development of the Safety Steering System of Motor Vehicles Transmission (차량용 변속기의 조향안전화 제어장치의 개발)

  • 송창섭
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.2
    • /
    • pp.12-17
    • /
    • 1995
  • The operation of heavy tracked vehicle has the problems in the steering that made by misoperations. The protection device is applied to the vehicles. But that device is applied to the vehicles. But that device has the engine stop and over load condition problems. the steering safety system is developed on the basis of clutch slip that proved the durability in the dynamo test and field test. The steering safety system caused the performance improvement of vehicles when steering.

  • PDF

Aerial Application using a Small RF Controlled Helicopter (II) - Development of Power Unit - (소형 무인헬기를 이용한 항공방제기술 (II) - 동력부의 개발 -)

  • Seok T.S.;Koo Y.M.;Lee C.S.;Shin S.K.;Kang T.G.;Kim S.H.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.2 s.115
    • /
    • pp.102-107
    • /
    • 2006
  • Opening agricultural market progresses radically, reducing cost of high quality agricultural products becomes urgent. Aerial application using an agricultural helicopter helps precise and timely spraying and reduces labor intensity and pollution. The development of an agricultural helicopter was necessary for taking advantages of both technique and economy. In this study, as the first stage of developing an unmanned helicopter capable of 20kg payload, an engine was selected and a prototype transmission was designed for an agricultural helicopter. Prony type dynamo-meter was constructed, the engine was tested and then performance curve was obtained. The centrifugal clutch was engaged at the rotation speed of 3,500-4,000 rpm. Maximum power was expected at the engine speed of 5,900-6,200 rpm when adjusted at the optimal output. Based on the test results, the transmission was designed for driving main rotor shaft.

Torsional Vibration Damper Using Magneto-Rheological Fluid (MR 유체를 이용한 비틀림진동 감쇠기)

  • 안영공;신동춘;양보석;김동조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.313-317
    • /
    • 2001
  • Magneto-Rheological fluid (MR fluid) is known as a class of functional fluid with controllable apparent viscosity of the fluid by the applied magnetic field strength. Extensive researches with the functional fluids have been done on applications of the fluid to mechanical components such as suspension, absorber, engine mount, clutch, break, valve, etc. In this study, a new torsional damper using MR fluid is proposed, and the response property of the damper was theoretically investigated. The present damper is quit effective for reducing the driveline vibration in a wide range of the engine speed.

  • PDF

Proposal of a Novel Plug-in-hybrid Power System Based on Analysis of PHEV System (PHEV 시스템의 분석을 통한 신 PHEV 동력 시스템 제안)

  • Kim, Jinseong;Park, Yeongil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.436-443
    • /
    • 2015
  • In order to develop the PHEV(plug-in hybrid electric vehicle), the specific power transmission systems considering the PHEV system characteristics should be applied. A PHEV applied to series-parallel type hybrid power transmission system is a typical example. In this paper, the novel hybrid power systems are proposed by analyzing the existing PHEV system. The backward simulation program is developed to analyze the fuel efficiency of hybrid power system. Quasi-static models for each components such as engine, motor, battery and vehicle are included in the developed simulation program. To obtain an optimal condition for hybrid systems, an optimization approach called the dynamic programming is applied. The simulation is performed in various driving cycles. A weakness for the existing system is found through the simulation. To compensate for a discovered weakness, novel hybrid power systems are proposed by adding or moving the clutch to the existing system. Comparing the simulation results for each systems, the improved fuel efficiency for proposed systems are verified.

Manual and Automatic Steering System Using Pulley and Electrical Clutch for Manned and Unmanned Electric Vehicle (풀리 및 전자클러치를 이용한 유무인 전기자동차용 수동 및 자동조향장치)

  • Lee, Yong-Jun;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.597-602
    • /
    • 2012
  • In this paper, a manual and automatic steering system for electric vehicles capable of manned and unmanned driving is proposed. The automatic steering systems, EPS, MDPS, used in conventional engine based car includes the problem of handle lock phenomenon while driving of overloading, therefore it has a drawback to apply to manned and unmanned electric vehicles. By using electronic clutch and pulleys, the proposed manual and automatic steering mechanism was designed so that it is possible to convert from manual to automatic steering mode. To experiment the performance of the proposed steering system, we made an experimental setup of an electric vehicle. We confirmed that the proposed manual and automatic steering system was useful for manned and unmanned electric vehicles.