• Title/Summary/Keyword: Engine Turbulence

Search Result 188, Processing Time 0.025 seconds

Numerical Study for Design of Center-body Diffuser (Center-body 디퓨져 형상설계를 위한 수치적연구)

  • Kim, Jong-Rok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.487-491
    • /
    • 2009
  • A study is analyzed on the design factor of Center-body diffuser and performed on conceptual design of Center-body diffuser with Computational Fluid Dynamic. The flow field of Center-body diffuser is calculated using Axisymmetric two-dimensional Navier-Stokes equation with $k-{\omega}$ turbulence model. The center-body diffuser is compared with second throat exhaust diffuser in terms of starting pressure, the degree of vacuum pressure, the design factor.

  • PDF

Numerical Modeling for Auto-ignition and Combustion Process of Fuel Sprays in High-Pressure Environment (고압 분무 연소장에서 연료 분무의 자발화 및 연소 과정 해석)

  • Yu, Y.W.;Kang, S.M.;Kim, Y.M.
    • Journal of ILASS-Korea
    • /
    • v.5 no.4
    • /
    • pp.66-71
    • /
    • 2000
  • The present study is mainly motivated to investigate the vaporization, auto-ignition and combustion processes in the high-pressure engine conditions. The high-pressure vaporization model is developed to realistically simulate the spray dynamics and vaporization characteristics in high-pressure and high-temperature environment. The interaction between chemistry and turbulence is treated by employing the Representative Interactive Flamelet (RIF) Model. The detailed chemistry of 114 elementary steps and 44 chemical species is adopted for the n-heptane/air reaction. In order to account for the spatial inhomogeneity of the scalar dissipation rate, the multiple RIFs are introduced. Numerical results indicate that the RIF approach together with the high-pressure vaporization model successfully predicts the ignition delay time and location as well as the essential features of a spray ignition and combustion processes.

  • PDF

Development of Plate-type Fine Atomizing Nozzles for SI Engines with Intake-port Fuel Injection

  • Suzuki, Takashi;Tani, Yasuhide
    • Journal of ILASS-Korea
    • /
    • v.12 no.1
    • /
    • pp.45-57
    • /
    • 2007
  • This paper presents both experimental and numerical studies regarding nozzles used for the SI engine application, particularly for the intake-port fuel injection type. The atomization mechanism of the multi-hole plate nozzle was investigated experimentally. It was found that the nozzle design added turbulence into the liquid-film jet and the jet disintegrated rapidly. Based on the results, various plate types for the nozzle were developed and tested; six hole nozzle for liquid jet interaction, plate-type nozzle with flat duct channel, and the simpler structured nozzle. The spray characteristics of the prototype nozzles were examined experimentally while the internal flow of the nozzle was investigated computationally. It was shown that turbulent liquid-film was injected and atomization quality was improved by controlling the internal flow condition of the plate-type nozzle.

  • PDF

A NUMERICAL STUDY OF FLOWFIELD AT A SUPERSONIC INLET BY CHANGING ANGLES OF ATTACK AND CHANNEL LENGTH (초음속 흡입구의 통로길이와 받음각에 따른 유동장 변화 연구)

  • Ryu, K.J.;Lim, S.;Kim, S.D.;Song, D.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.21-27
    • /
    • 2010
  • The flow characteristics on a supersonic inlet with bleeding system by changing angles of attack and channel length conditions are studied by computational 3D turbulent flow analysis. A compressible upwind flux difference splitting Navier-Stokes method with $k-{\omega}$ turbulence model is used to analysis the inlet flowfield. More non-uniform flowfields are shown at the AIP when angle of attack becomes bigger and bigger. These non-uniform flowfield works the performance aggravating factors of the supersonic engine. Non-uniform flowfield by changing channel length at the various angle of attack are investigated.

  • PDF

A Study on the Flow Characteristic of the Diesel Engine DPF (디젤엔진용 매연여과장치 내부유동 특성 연구)

  • Go, Hyun-Sun;Jung, Chan-Gyu;Lee, Heang-Nam
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.109-117
    • /
    • 2012
  • This paper addresses influence on the flow field by varying the length of DPF Inlet pipe in 5 ways. Numerical analysis is carried out by using PIV and commercial code and as a result, PIV and commercial code shows correlation correspond to 87%. Furthermore, in the same velocity condition, as stable and high pressure value is shown when the Inlet pipe length is 20mm, particulate filtering rate can be increased.

A Numerical Study on Axial Inlet Cyclone for Diesel Engine (디젤 엔진용 싸이클론 내부 수치 해석)

  • Kim, S.K.;Son, C.S.;Kim, I.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.16-21
    • /
    • 2006
  • On this study, numerical analysis was performed for the 3 dimensional flow field of gas and particle phase for axial inlet cyclone, a part of dust collector. We applied FVM to visualize the gas phase. The flow was solved using ${\kappa}-{\varepsilon}$ turbulence model. The major parameters considered in this study were helical guide vane, inner diameter, length. Particle trajectory calculations were performed for the particle sizes of $5{\mu}m{\sim}75{\mu}m$. The distribution curve of particle sizes was made of Rosin-Rammler function. The simulation results show various gas flows, particle trajectories on numerical models.

  • PDF

NUMERICAL STUDY ON THE TURBOPUMP INDUCER (터보펌프 인듀서에 대한 수치해석적 연구)

  • Noh J.G.;Choi C.H.;Hong S.S.;Kim J.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.16-20
    • /
    • 2006
  • The present study focuses on the flow analysis of a turbo pump inducer by performing both numerical and experimental methods. The head rise, efficiency and detailed flow fields such as outlet flow angles, pressure and velocity vectors are measured and compared with the computational data. Generally a good agreement is obtained between numerical and experimental results. However, some discrepancies are observed due to complex flow structures inside the inducer. Future calculations with an advanced turbulence model and a dense computational grid needs to be performed to obtain accurate numerical solution for the detailed flow fields.

A Study on the Development of a 4,000CMM Grade Blower for a Ventilation System (환기시스템용 4000CMM급 송풍기 개발에 관한 연구)

  • Lee, Cheon-Suk;Lee, Won-Uk;Jang, Sung-Cheol;Yi, Chung-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.17-23
    • /
    • 2017
  • This study is about the development and revision of a blower design for a ventilation system. In this study, to describe the flow in the 4000CMM grade blower, 3-dimensional steady-state turbulence was assumed to govern the flow equation. The flow field with velocity distribution according to the elbow duct of the ventilation system is also compared. Finally, vibration was observed in the blower at the installation to ventilation system. The cause was due to a problem in the manufacturing process of the airfoil type impeller.

A Characteristics of a Secondary flow in a Corner Section of Square Duct (정사각덕트의 코너부에서 이차유동 특성)

  • Joung, J.M.;Kim, J.H.;Yoo, Y.T.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.753-758
    • /
    • 2000
  • Heat engine and fluid machinery in the plant have to linked with various ducts network and the corresponding design have to be concerned about effectiveness and stability of system of plant. To optimum control and design system concerning stability, economization, operating effectiveness we have to exact analysis flow properties of a duct applying to fluid machinery, heat exchanger, cooling machine, air conditioning equipment. therefore, it is necessary to research the duct, heat transfer equipment, for increasing overall effectiveness of air conditioning system by suggesting basic data of the duct resulting from organic research. So we can contribute to technical development of the duct. In case of speeding up the flow rate of the duct, lots of wave velocity components are occurred the value of boundary layer resulting from developing the boundary layer at both walls of duct.

  • PDF

Numerical Modeling for Auto-Ignition and Combustion Processes of Dimethyl Ether (DME) Fuel Sprays (DME 연료의 점화 및 연소특성 해석)

  • Lee, J.W.;Ryu, L.S.;Kim, Y.M.
    • Journal of ILASS-Korea
    • /
    • v.10 no.4
    • /
    • pp.16-25
    • /
    • 2005
  • The present study is mainly motivated to investigate the vaporization, auto-ignition and combustion processes in high-pressure engine conditions. In order to realistically simulate the dimethyl ether (DME) spray dynamics and vaporization characteristics in high-pressure and high-temperature environment, the high-pressure vaporization model is utilized. The interaction between chemistry and turbulence is treated by employing the Representative Interaction Flamelet(RIF) model. The detailed chemistry of 336 elementary steps and 78 chemical species is used for the DME/air reaction. Numerical results indicate that the RIF approach, together with the high-pressure vaporization model, successfully predicts the essential feature of ignition and spray combustion processes.

  • PDF