• Title/Summary/Keyword: Engine Startup

Search Result 41, Processing Time 0.009 seconds

The Study about Conditions for Stable Engine Startup on Launch Vehicle (발사체 엔진의 안정적인 시동 조건에 대한 연구)

  • Jung, Young-Suk;Lee, Han-Ju;Oh, Seung-Hyub;Park, Jeong-Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.432-435
    • /
    • 2008
  • Launch vehicle for injecting the satellite into its orbit is composed with propulsion system, guidance and navigation system, telemetry and so on. Among the others, the propulsion system is the most important part, because that is the key factor of failure of launch vehicle. Especially, the most of failures were occurred in time of engine startup. Therefore, the study of the conditions for stable engine startup is needed at the first step of development. The many researches were accomplished for mathematical modeling, stable startup engine and control of liquid propellant rocket engine. But the cavitation problem that can be occurred at an inlet of pump associated with propellant feeding system wasn't considered in these works. In this paper, propulsion system model was integrated with clustered engines and propellant feeding system for the simulations of engine startup. As the results of simulations, the requirements were deduced for the stable engine startup without the cavitation at an inlet of pump.

  • PDF

Numerical Analysis on the Startup of a Rocket Engine (로켓 엔진의 시동에 관한 해석적 연구)

  • Park, Soon-Young;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.60-71
    • /
    • 2007
  • The startup characteristic of liquid propellant rocket engine should be focused on the stable ignition of combustion chamber and gas generator. Also, to lessen the propellants consumption during this period which doesn't contribute to the flight thrust, the engine has to be transferred to the nominal mode quickly. Because of the risk of test, it is impossible to develop all the startup cyclogram or the specifications of engine by test, so the precedent numerical approach is quite necessary. In this study we developed a mathematical model for the startup phenomena in a liquid rocket engine driven by gas generator-turbopump system based on the commercial 1-D flow system analysis program, Flowmaster. Using this program we proposed a methodology to obtain the specifications of turbine starter and the opening time of shutoff valves for the stable startup of the engine. To verify this methodology we qualitatively compared the analysis results to the typical startup curve of the published engine, then found it is quite well matched.

Development and Evaluation of Startup Simulation Code for an Open Cycle Liquid Rocket Engine (개방형 사이클 액체로켓엔진 시동해석 코드 개발 및 평가)

  • Jung, Taekyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.67-74
    • /
    • 2019
  • In this paper, mathematical models of a simulation code are presented. The simulation code was developed for the startup analysis of an open cycle liquid rocket engine (LRE). Most of the components comprising an LRE, including the priming process in the propellant feeding line, were considered. A startup simulation of a 75-tonf LRE, which was used for the KSLV-II test launch vehicle (TLV), was performed. The simulation results showed good agreement with the engine acceptance test results, thus proving the validity of the startup simulation code.

Improvement of the Startup Transient Analysis on the Liquid Rocket Engine Using the TP+GG Coupled Test Result (터보펌프+가스발생기 연계시험 결과를 이용한 액체로켓엔진 시동 과정에 대한 해석 방법의 개선)

  • Park, Soon-Young;Cho, Won-Kook;Moon, Yoon-Wan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.821-826
    • /
    • 2011
  • The turbopump+gas generator (TP+GG) coupled test for the liquid rocket engine development was performed. By comparing the results of a engine startup transient analysis with this test results, the verification of the analysis model was performed. From this, as to the analysis of the engine startup, the method calculating the pressure ratio of the turbine during the initial stage of startup was improved. And a fact that the transient heat transfer phenomenon between the working fluid and the solid parts of turbine effects to the calculation of turbine pressure ratio and consequentially to the startup analysis was revealed.

  • PDF

Simulator Development for Startup Analysis of Staged Combustion Cycle Engine Powerpack (다단연소사이클 엔진 파워팩 시동 해석 시뮬레이터 개발)

  • Lee, Suji;Moon, Insang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.62-70
    • /
    • 2015
  • A liquid rocket engine system can cause rapid pressure and temperature variations during the startup period. Thus the startup analysis is required to reduce time and expense for successful development of liquid rocket engine through the startup prediction. In this study, a startup analysis simulator is developed for a staged combustion cycle engine powerpack. This simulator calculates propellant flow rates using pressure and flow rate balances. In addition, a rotational speed of turbopump is obtained as a function of time by mathematical modeling. A startup analysis result shows that the time to reach a steady-state and a rotational speed at the steady-state are 1.3 sec and 27,500 rpm, respectively. Moreover it can indicate proper startup sequences for stable operation.

터보펌프 공급식 액체 로켓엔진의 시동 과도 해석

  • Park, Soon-Young;Nam, Chang-Ho;Moon, In-Sang;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.142-152
    • /
    • 2005
  • There are two definite objects for developing the startup transient of liquid rocket engine. One is to achieve the repeatability of startup to ensure higher reliability, and the other is to reduce the time of the startup transient. Typically in the initial phase of engine development as we are currently opposing, it is hard to estimate engine startup time due to the lack of experiences. In this work, a startup transient analysis tool was developed with the introduction of the mathematical model for each component of pump-fed liquid rocket engine system. Startup transient was investigated for a 25 ton class gas generator cycle engine to find necessary time for reaching steady state from startup and this enabled to reveal dynamic characteristics of the engine.

  • PDF

Prediction of Startup Characteristic for 30 tonf Liquid Rocket Engine TP-GG-CC Coupled Test (30톤급 액체엔진 TP-GG-CC 연계시험에서 시동특성예측)

  • Moon, Yoon-Wan;Kim, Seung-Han;Kim, Chul-Woong;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.62-65
    • /
    • 2009
  • This study for prediction of startup characteristics for 30 tonf liquid rocket engine TP-GG-CC coupled test was performed on the basis of the previous TP-GG test and prediction results. For determining the valve sequence the startup analysis was performed by the specified program for several main valve time and the adequate valve sequence for startup could be obtained.

  • PDF

A Study on the 2-Stage Startup of Liquid Rocket Engine (액체로켓엔진의 2단 시동에 관한 연구)

  • Park, Soon-Young;Cho, Won-Kook
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.324-327
    • /
    • 2008
  • Two stage startup of high thrust liquid rocket engine can reduce the abrupt impulse to the vehicle and engine by changing oxidizer flow rate to the combustion chamber. Also it ensures stable ignition of combustion chamber against hard start and to prevent pump stall by the sudden supply of large mass flow rate. However high discharge pressure of oxidizer pump or temperature rise in gas generator may be a problem in applying the preliminary stage. To solve this problem, we analyzed the effect of the slope of oxidizer pump's head curve and the oxidizer mass flow rate to combustion chamber during preliminary stage using the rocket engine startup analysis code. A moderate slope(${\circleddash}{\sim}$-3) of head curve and 80% mass flow rate during preliminary stage can reduce the oxidizer pump discharge pressure by 15 to 20% comparing with the condition of ${\circleddash}$=-4.37 head curve and 70% mass flow rate. Also it can maintain the turbine inlet temperature rise within 50K from the nominal value.

  • PDF

Analysis for Pressure Oscillation on the Inlet of Turbo-Pump at the Moment of Launch Vehicle Engine Startup (발사체 엔진 시동시 PSD 유무에 따른 터보펌프 입구 배관 압력 섭동 해석)

  • Jung, Youngsuk;Kim, Juwan;Park, Kwangkun;Baek, Seungwhan;Cho, Kiejoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1144-1147
    • /
    • 2017
  • It was reviewed about the pressure oscillation on the inlet of turbo-pump at the moment of engine startup and shutdown. Specially, This research was performed how much is the effect of PSD(Pogo Suppression Device) about the pressure oscillation on the inlet of turbo-pump at the moment of engine startup and shutdown. For analysis, propellant tank PSD and Engine are modelled with Flowmaster which is the commercial 1D program. As the analysis results, even though the PSD is installed in the pipeline, the pressure drop or rising at the moment of engine startup and shutdown is same compared to the case without PSD. However, it was confirmed that PSD reduces the pressure oscillation of the high frequency band as the original purpose of PSD.

  • PDF

Startup Analysis of Staged Combustion Cycle Engine Powerpack (다단연소사이클 엔진 파워팩 시동해석)

  • Lee, Suji;Moon, Insang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.3
    • /
    • pp.1-8
    • /
    • 2016
  • It was examined that start-up characteristics of a staged combustion cycle engine powerpack. Among various parameters, valve opening time was considered as a main factor affecting the start-up characteristics. Using monte-carlo method, characteristics variation was analyzed when the valve opening time deviates from the nominal value. As a result, the main fuel valve opening time and the start turbine ending time were significant associated with the startup characteristics. When separating main fuel valve opening time and start turbine stop time, main fuel valve opening time was an important factor. For stable operation, the main fuel valve opening time must be set one second before after driving the start turbine. Likewise, it was confirmed that the startup analysis can suggest an appropriate startup sequence for a stable startup.