• Title/Summary/Keyword: Engine Oil

Search Result 870, Processing Time 0.023 seconds

A Study on Combustion Process of Diesel Engine by Image Analysis -the use of ethanol-diesel oil blend fuel- (화상 분석에 의한 디젤기관의 연소과정에 관한 연구 -에탄올-경유 혼합 연료의 사용-)

  • 이형곤;방중철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.94-101
    • /
    • 2001
  • In this paper, the combustion improvement effects of alcohol-diesel oil blend fuel were investigated in a visualization engine. As a result of experiment, it was found out that the combustion chamber of deep dish type and re-entrant type at the same operation condition. However, when the con-tent of alcohol exceeded 10% of total fuel delivery, the combustion of alcohol-diesel oil blend fuel was worse than that of diesel oil. The maximum blend quantity of ethanol which is not ignited in the re-entrant type combustion chamber was estimated at approximately 40% of total fuel delivery. So, it is necessary to blend appropriate quantity of a volatility fuel such as alcohol in order to improve combustion.

  • PDF

Surface Roughness Effects on the Lubrication Characteristics of the Engine Piston Ring Pack

  • Yun, Jeong-Eui
    • KSTLE International Journal
    • /
    • v.1 no.2
    • /
    • pp.83-90
    • /
    • 2000
  • The surface roughness between a piston ring pack and a cylinder liner directly affects the fuel economy, the oil consumption, and the emission of the engine so that it is very important to clarify the surface roughness effects on the lubrication characteristics. The friction characteristics of the piston ring during engine operations are known to as mixed lubrication experimentally. In this study to simulate the effects of the surface roughness of the piston ring pack on the lubrication characteristics, the mixed lubrication analysis of piston rings was performed using the simplified average Reynolds equation. From the results the surface roughness was found be considerably affects minimum oil film thickness as well as FMEP(Friction Mean Effective Pressure). Especially, the oil ring was the most sensitive on the surface roughness.

  • PDF

An Experimental Study on the Specific Wear Amount of Base oil in Automotive Lubricant (자동차 윤활기유의 비마모량에 관한 실험적 연구)

  • Jeon, Chan-Yeal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.3
    • /
    • pp.488-492
    • /
    • 2009
  • This paper have been analyzed specific wear characteristics of various base oils used in the automobile engine by experimental study. Specific wear amount has been calculated by the measured normal force and friction force under various speed operating conditions, such as, viscosities and temperatures. It have been verified that the specific wear characteristics relation of the base oil used in a engine oil is related to the various operating conditions.

The Combustion Characteristics of Biodiesel Fuel as an Alternative Fuel for D.I. Diesel Engine (직접분사식 디젤기관에서 바이오디젤 연료의 연소특성)

  • Jang, S.H.;Suh, J.J.
    • Journal of Power System Engineering
    • /
    • v.12 no.2
    • /
    • pp.12-17
    • /
    • 2008
  • Biodiesel fuel(BDF) which is easily produced from vegetable oils such as soybean oil and rice bran oil can be effectively used as an alternative fuel in diesel engine. But biodiesel fuel can affect the performance and emissions in diesel engine because it has different chemical and physical properties from diesel fuel. To investigate the combustion characteristics of biodiesel fuel as an alternative fuel for D.I. diesel engine, the experiments were carried out at the three-cylinder, four stroke D.I. diesel engine with T/C. Experimental parameters adopted a conventional diesel fuel and a blend of biodiesel fuel derived from soybean. As a result of experiments in a test engine, BSFC with blend of BDF resulted in higher than with diesel fuel. The ignition delay decreased with blend of BDF than with diesel fuel.

  • PDF

A Study for Failure Examples Including with Engine Oil Leakage, Poor Contact by Fin Damage and Vaporizer Inferiority on LPG Automotive (LPG 자동차의 엔진오일누설, 핀 손상에 의한 접촉불량, 베이퍼라이저 내부불량으로 인한 고장사례연구)

  • IL Kwon, Lee;Chang Ho, Kook;Sung Hoon, Ham;Seung Yong, Lee;Jae Gang, Lee;Seung Min, Han; Woo Chan, Hwang;Dae Cheon, Jang;Chang Bae, You;Jeong Ho, Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.24-29
    • /
    • 2022
  • This paper is a purpose to Analyze and study the failure examples for a engine oil leakage of camshaft bearing seal, poor contact by computer connector fin damage and vaporizer inferiority on LPG automotive. The first example, when the researcher disassembled the cylinder head of engine to establish the cause for oil leakage, he confirmed the engine oil leakage by damaged between the engine intake camshaft bearing and seal part. The second example, the connector fin of power source line that control the starting of a car supplied with engine computer. As a result, it found the fact that the engine operation stopped because of cutting of the power source by connector fin damage. The third example, it verified the engine incongruity phe cutting of the power source by connector fin damage. The third example, it verified the engine incongruity phenomenon as thd gas didn't flow the vaporizer by foreign substance deposit. Finally, it supplied a small quantity gas from vaporizer to mix. As the computer controlling mix opening condition supplied a air as opening signal, the air and fuel became rarefied state. it knew that the engine didn't produce prpper power. Therefore, a car have to throughtly inspect not in order to arise the failure symptoms.

Dynamic Stiffness and Frequency Response Analysis for the Development of Magnesium Oil Pans (마그네슘 합금 오일팬 개발을 위한 동적 강성 및 주파수 응답 해석)

  • Shin, Hyun-Woo;Chung, Yeon-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.141-149
    • /
    • 2009
  • The oil pan is an important factor for the noise behavior of the engine system. In this paper a new Magnesium oil pan was designed and analyzed to replace the current Aluminium oil pan. Dynamic stiffness and sound pressure level of the newly designed Mg oil pan were compared with the AI oil pan using the finite element method. NVH characteristics of the Mg oil pan is slightly insufficient when we changed the material of the oil pan from Al to Mg without modifying the design. Some design modifications of the Mg oil pan resulted in equal or superior characteristics compared to the Al oil pan. New ribs were added to stiffen the structure of the Mg oil pan. Thickness of thin plate area was increased to reduce the radiated noise. Through the changes of shape, higher dynamic stiffness than the current Al oil pan were achieved. Results of frequency response analysis show that we can reduce the sound pressure level of the oil pan if we increase the thickness of the thin plate area. It is shown that the new Mg oil pan could reduce the weight of the engine system and improve NVH quality of an automobile.

A Feasibility Study of Using Diesel/Biodiesel-Pyrolysis Oil-Butanol Blends in a Diesel Engine (디젤유/바이오디젤유-열분해유-부탄올 혼합유의 디젤 엔진 적용 가능성에 관한 연구)

  • Kim, Hoseung;Jang, Youngun;Lee, Seokhwan;Kim, Taeyoung;Kang, Kernyong;Yoon, Junkyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.116-125
    • /
    • 2014
  • Pyrolysis oil (PO), derived from biomass through fast pyrolysis process have the potential to displace significant amounts of petroleum fuels. The PO derived from wood has been regarded as an alternative fuel to be used in diesel engines. However, the use of PO in a diesel engine is very limited due to its poor properties like low energy density, low cetane number, high acidity and high viscosity of PO. Therefore, one of the easiest way to adopt PO to diesel engine without modifications is blended with other fuels that have high centane number. However, PO that has high amount of polar chemicals is immiscible with non polar hydrocarbons of diesel or biodiesel. Thus, to stabilize a homogeneous phase of diesel/biodiesel-PO blends, a proper surfactant should be used. Nevertheless, PO which was produced from different biomass type have varied characteristics and this complicates the selection of a suitable additive for a specific PO-diesel emulsion. In this regard, a more simple approach such as the use of a co-solvent like ethanol or butanol to induce a more stable phase of the PO-diesel mixture could be a promising alternative. In this study, a diesel engine operated with diesel/biodiesel-PO-butanol blends was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine were examined under the engine loads of IMEP 0.2 ~ 0.8MPa.

Feasibility Study of Using Wood Pyrolysis Oil in a Dual-injection Diesel Engine (이중분사기가 장착된 디젤 엔진에서 목질계 열분해유의 적용 가능성에 관한 연구)

  • Lee, Seokhwan;Jang, Youngun;Kim, Hoseung;Kim, Taeyoung;Kang, Kernyong;Lim, Jonghan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2014
  • The vast stores of biomass available in the worldwide have the potential to displace significant amounts of petroleum fuels. Fast pyrolysis of biomass is one of several paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO) has been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of WPO in a diesel engine requires modifications due to low energy density, high water contents, high acidity, high viscosity, and low cetane number of the WPO. One possible method by which the shortcomings may be circumvented is to co-fire WPO with other petroleum fuels. WPO has poor miscibility with light petroleum fuel oils; the most suitable candidates fuels for direct fuel mixing are methanol or ethanol. Early mixing with methanol or ethanol has the added benefit of significantly improving the storage and handling properties of the WPO. For separate injection co-firing, a WPO-ethanol blended fuel can be fired through diesel pilot injection in a dual-injection dieel engine. In this study, the performance and emission characteristics of a dual-injection diesel engine fuelled with diesel (pilot injection) and WPO-ethanol blend (main injection) were experimentally investigated. Results showed that although stable engine operation was possible with separate injection co-firing, the fuel conversion efficiency was slightly decreased due to high water contents of WPO compare to diesel combustion.

Examination on Combustion Quality Analysis of Residue Heavy Fuel Oil and Improvement of Combustion Quality Using Pre-injection (중질 잔사유의 연소성 분석과 보조 분사에 의한 연소성 향상에 관한 검토)

  • Yoo, Dong-Hoon
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.113-119
    • /
    • 2014
  • Due to the development of the petroleum refining technology and continuously increased demand from markets, a quantity of gasoline and diesel oil produced from a restricted quantity of crude oil has been increasing, and residual fuel to be used at marine diesel engines has been gradually becoming low quality. As a result, it was recently reported that trouble oils which cause abnormal combustion such as knocking with extreme noise and misfire from internal combustion engines were increasing throughout the world. In this study, an author investigated ignitability and combustion quality by using combustion analyzer with constant volume(FCA, Fuel Combustion Analyzer) and middle speed diesel engine about MDO(Marine Diesel Oil), HFO(Heavy Fuel Oil), LCO(Light Cycle Oil) and Blend-HFO which was blended LCO of 1000 liters with HFO of 600 liters. Moreover, for betterment of ignitability and combustion quality of injected fuels, multi-injection experiment was carried out in the diesel engine using Blend-HFO. According to the results of FCA analysis, ignitability and combustion quality was bad in the order of MDO

Influence of Lubricating Oil Emulsified on the Behaviour of Cavitation Erosion - Corrosion at Bearing Metals (베어링 합금재의 캐비테이션 침식-부식거동에 미치는 유화 윤활유의 영향)

  • 임우조;이진열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.3
    • /
    • pp.42-49
    • /
    • 1993
  • Recently, because the lubricating oil showed a tendency to be emulsified and oxidized by high speed, high output and the extension of maintenance & conservation of marine engine, the cavitation erosion-corrosion at such an environment became a big problem on effective performance of engine. Therefore, there was a need to study the behavior and protection of erosion-corrosion damage, and then applied inhibitor to a protective method of cavitation erosion- corrosion damage. At this time, test environments were marine lubricating oil & various emulsified oil that mixed distilled water and sea water etc., and also used 20KHz, 24.mu.m piezoelectric vibrator as an experimental apparatus of cavitation erosion. With this apparatus, we investigated an influence of the emulsified oil on characteristics of erosion-corrosion and protection for erosion-corrosion by inhibitor at slide bearing metals.

  • PDF