• Title/Summary/Keyword: Engine Mount Bracket

Search Result 8, Processing Time 0.026 seconds

엔진 마운트의 interm 브라켓 공진 주파수 target 설정에 관한 연구

  • Sun, Jungwoog;Woo, Sunggeun;Jeon, Byounkeun;Kim, Dalsik;Kang, Shinnam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.769-772
    • /
    • 2013
  • When developing engine mount, interm mount bracket 1st resonance is critical to make sound quality better or worse. So, at the initial stage of development, we need to consider some design parameter to setup the target of interm bracket 1st resonance. Especially, 3cylinder interm bracket guideline is not well known. So, this paper deals with some important sensitivity which should be considered during the development of vehicle. From source to interior side, we should know the component sensitivity like body sensitivity p/F or bracket gain etc. Through this paper, we could get the knowledge of design guideline and key consideration points.

  • PDF

Analysis on the Tube and Welded Blank Hydroforming of Automotive Engine Mount Bracket (자동차 엔진마운트 브래킷의 관재 및 용접판재 유압성형에 대한 성형해석)

  • 김헌영;신용승;홍춘기;전병희;오수익
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.3-14
    • /
    • 2001
  • Hydroforming is the technology using hydraulic pressure and forming sheet or tube metals to desired shape in a die cavity. lt can be characterized as tube hydroforming and sheet hydroforming depending on the shape of used blank. Due to its prcess-related benefits, this production technology has been remarkably noticed for great potential for feasible applications and recently gained great attraction from many industrials including automotive and non-automotive. This Paper analyzed the tube and the welded blank hydroforming process and compared formability of the processes for automotive engine mount bracket. The mathematical analysis was performed by using the dynamic explicit finite element code, PAM-STAMP. In tube hydroforming, bending, springback, and forming analysis were carried out and the effect of mandrel and axial feeding were examined. In welded blank hydroforming, pressure curve history is determined and the results of forming analysis were evaluated by the comparison of experimental results in the aspects of deformed shape and thickness distribution.

  • PDF

Analysis and formability evaluation in tube and welded blank hydroforming of engine mount bracket (엔진마운트 브래킷의 튜브 및 용접판매 유압성형에 대한 성형해석과 성형성 비교)

  • 신용승
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.7-13
    • /
    • 1999
  • Hydroforming is the technology that utilizes hydraulic pressure to form sheet and tube metals in to desired shapes inside die cavities. It can be subdivided into tube hydroforming and sheet hydroforming according to the blanks used. In this paper the simulation of tube and welded blank hydroforming is carried out respectiyely. And simulation results are compared to evaluate formability in tube and welded blank hydroforming of engine mount bracket

  • PDF

Structural Analysis of Engine Mounting Bracket (엔진 마운팅 브라켓의 구조해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.525-531
    • /
    • 2012
  • This study aims at the structural analysis of vibration and fatigue according to the configuration of engine mount. Maximum equivalent stress or deformation is shown at bracket or case respectively. As harmonic vibration analysis, the maximum displacement amplitude is happened at 4,000Hz. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' or 'Saw tooth' becomes most stable. In case of 'Sample history' or 'Saw tooth' with the average stress of 4,200MPa or 0MPa and the amplitude stress of -3,000MPa or 7MPa, the possibility of maximum damage becomes 70%. This stress state can be shown with 7 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the design on engine mount by investigating prevention and durability against its damage.

Microstructural and Mechanical Characteristics of Al-Si-Cu Die Casting Alloy for Engine Mount Bracket (엔진 마운트 브라켓용 다이캐스팅 Al-Si-Cu 합금의 미세조직과 기계적 특성)

  • Chyun, In-Bum;Hong, Seung-Pyo;Kim, Chung-Seok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.6
    • /
    • pp.281-287
    • /
    • 2014
  • Microstructural and mechanical characteristics of Al-6Si-2Cu alloy for engine mount bracket prepared by gravity casting (as-cast) and die-casting (as-diecast) process have been investigated. For the microstructural characterization, the inductively coupled plasma mass spectrometry (ICP-MS), optical microscope (OM), scanning electron microscope (SEM) and electron probe microanalysis (EPMA) analyses are conducted. For the intermetallic phases, the X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) are also conducted with quantitative and qualitative analysis. Micro Vickers hardness and static tensile test are achieved in order to measure mechanical properties of alloys. Secondary dendrite arm spacing (SDAS) of as-cast and as-diecast show 37um and 18um, respectively. A large amount of coarsen eutectic Si, $Al_2Cu$ intermetallic phase and Fe-rich phases are identified in the Al-6Si-2Cu alloy. Mechanical properties of gravity casting alloy are much higher than those of die-casting alloy. Especially, yield strength and elongation of gravity casting alloy show 2 times higher than die-casting alloy. After shot peening, shot peening refined the surface grains and Si particles of the alloys by plastic deformation. The surface hardness value shows that shot peening alloy has higher value than unpeening alloy.

Designing isolation system for Engine/Compressor Assembly of GAS Driven Heat Pump (가스 엔진 구동 열펌프 실외기 엔진/압축기 진동 절연 설계)

  • Lenchine Valeri V.;Ko, Hong-Seok;Joo, Jae-Man;Oh, Sang-Kyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1128-1133
    • /
    • 2003
  • A gas driven heat pump (GHP) core design comprises internal combustion engine, compressors incorporated to a cooling/heating system, rubber mountings and belt transmissions. Main excitation farces are generated by an engine, compressors themselves and belt fluctuation. It leads to high vibration level of the mount that can cause damage of GHP elements. Therefore an appropriate design of the mounting system is crucial in terms of reliability and vibration reduction. In this paper oscillation of the engine mount is explored both experimentally and analytically. Experimental analysis of natural frequencies and operational frequency response of the GHP engine mounting system enables to create simplified model for numerical and analytical investigations. It is worked out criteria f3r vibration abatement of the isolated structure. Influence of bracket stiffness between engine and compressors, suspension locations and damper performance is investigated. Ways to reduce excitation forces and improve dynamic performance of the engine-compressor mounting system are considered from these analyses. Implementation of the proposed approach permits to choose appropriate rubber mountings and their location as well as joining elements design A phase matching technique can be employed to control forces from main exciters. It enables to changing vibration response of the structure by control of natural modes contribution. Proposed changes lead to significant vibration reduction and can be easily utilized in engineering practice.

  • PDF

Development of an Intake E-CVVT Noise for the Medium-sized Sedan Vehicle (중형 세단 차량의 흡기 전동 CVVT 소음 개발)

  • Lee, Jong Kyu;Lee, Hyung Min;Lee, Hae Seung;Kwon, O Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.341-346
    • /
    • 2014
  • Intake E-CVVT noise, generally caused by collision sound of roller and cage clearance at idle and driving condition, is considerable source of annoyance in passenger cars using the gasoline engine. Main source of this noise is the cam torque variation of an intake E-CVVT system, and can be controlled by clearance decrease such as backlash reduction, but which may increase the manufacturing cost. Thus in this paper, most effective solution for low noise intake E-CVVT was achieved through not only reduction of backlash and cam angular acceleration but also improvement of vehicle transfer system, which is optimal configuration through acoustic sensitivity optimization of engine mount support bracket.

  • PDF

Noise Reduction study in the Tractor Cab (트랙터 차실의 소음 저감에 관한 연구)

  • Chun, Du-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1461-1466
    • /
    • 2000
  • This paper investigates the noise reduction scheme in tractor cabin by using various steps of experiment. The experiments were performed in the field as well as in the lab to facilitate the detail test procedure. Some of the test results were compared with computational results. Several noise sources and paths were identified including the engine compartment (cooling fan and timing gear cover), hydraulic system and its components (hoses, tubes and there mount) and structural characteristics of the cab, window, mounting bracket and machine frame including steps. Throughout the several design changes, cab noise level was reduced from 80.2dBA to 74.8dBA.

  • PDF