• Title/Summary/Keyword: Engagement simulation

Search Result 127, Processing Time 0.027 seconds

Design of terminal guidance algorithm for underwater vehicles using LQ technique (LQ기법을 이용한 수중 운동체의 마지막(terminal) 유도 알고리즘 설계)

  • 김삼수;이갑래;이재명;전완수;박성희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.620-628
    • /
    • 1991
  • For a Stationary moving-target. the design technique of guidance system for underwater vehicle with a seeker of st type is developed. Using perturbation theory, a new method which linearizes the nonlinear intercept geometry is proposed. On the basis of the linearized system modeling, LQ and PID design technique is used to determine the structure and gain of the guidance system. Some simulation results applied underwater engagement are represented to show that the proposed guidance law is superior to the other guidance laws as pursuit, Bang-Beng, PN APN.

  • PDF

Analysis of the error signals for infrared reticle seekers in multiple targets (다중 표적에 대한 적외선 레티클 탐색기의 오차 신호 분석)

  • 한성현;홍현기;최종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.6
    • /
    • pp.1438-1446
    • /
    • 1996
  • Infrared seekers using reticles with a single detector have been widely used due to small size and low cost. However, the analysis of the error signals and the performance in multiple targets are performed either simplistically or not at all. In this paper, we present detector signals and processing results using image and signal processing techniques, especially performance analysis in multiple targets. The simulation results are essential to make the advanced signal processing part of retical seekers which can deal with various engagement scenarios.

  • PDF

Combat Entity Based Modeling Methodology to Enable Joint Analysis of Performance/Engagement Effectiveness - Part 2 : Detailed Model Design & Model Implementation (성능/교전 효과도의 상호 분석이 가능한 전투 개체 기반의 모델링 방법론 - 제2부 : 상세 모델 설계 및 모델 구현)

  • Seo, Kyung-Min;Choi, Changbeom;Kim, Tag Gon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.235-247
    • /
    • 2014
  • Based on two dimensional model partition method proposed in Part 1, Part 2 provides detailed model specification and implementation. To mathematically delineate a model's behaviors and interactions among them, we extend the DEVS (Discrete Event Systems Specification) formalism and newly propose CE-DEVS (Combat Entity-DEVS) for an upper abstraction sub-model of a combat entity model. The proposed CE-DEVS additionally define two sets and one function to reflect essential semantics for the model's behaviors explicitly. These definitions enable us to understand and represent the model's behaviors easily since they eliminate differences of meaning between real-world expressions and model specifications. For model implementation, upper abstraction sub-models are implemented with DEVSim++, while the lower sub-models are realized using the C++ language. With the use of overall modeling techniques proposed in Part 1 and 2, we can conduct constructive simulation and assess factors about combat logics as well as battle field functions of the next-generation combat entity, minimizing additional modeling efforts. From the anti-torpedo warfare experiment, we can gain interesting experimental results regarding engagement situations employing developing weapons and their tactics. Finally, we expect that this work will serve an immediate application for various engagement warfare.

A Methodology for Analyzing Effects of the Cooperative Engagement Capability System Applied to Naval Operations (협동교전능력(CEC) 체계구축을 위한 해상작전 적용효과 분석 방법론)

  • Jung, Yong-Tae;Jeong, Bong Joo;Choi, Bong-Wan;Yim, Dong-Soon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.95-105
    • /
    • 2019
  • The Cooperative Engagement Capability (CEC) System produces a synergy between the sensors and shooters that are used on various platforms by integrating them. Even the US Navy has been recently adopting the CEC system that maximizes the effectiveness of the air defense operations by efficiently coordinating the dispersed air defense assets. The Navy of other countries are conducting research studies on the theory and application methods for the CEC system. The ROK Navy has limited air defense capabilities due to its independent weapons systems on battle ships. Therefore, the ROK Navy is currently going through a phase where research on proving the validity of building the CEC system because it will provide a way to overcome the limit of the platform based air defense capability. In this study, our goal is to propose methods that maximize the air defense capability of ROK Navy, identify the available assets for constructing the CEC system, and estimate effects of the CEC system when it is applied to the naval operations. In addition, we will provide a simple model that was developed to estimate these effects and a case study with virtual data to demonstrate the effects of the system when it is applied to the naval operations. The research result of this study will provide a way for building the basis of the Korean CEC system.

A Fault-Tolerant Scheme Based on Message Passing for Mission-Critical Computers (임무지향 컴퓨터를 위한 메시지패싱 고장감내 기법)

  • Kim, Taehyon;Bae, Jungil;Shin, Jinbeom;Cho, Kilseok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.762-770
    • /
    • 2015
  • Fault tolerance is a crucial design for a mission-critical computer such as engagement control computer that has to maintain its operation for long mission time. In recent years, software fault-tolerant design is becoming important in terms of cost-effectiveness and high-efficiency. In this paper, we propose MPCMCC which is a model-based software component to implement fault tolerance in mission-critical computers. MPCMCC is a fault tolerance design that synchronizes shared data between two computers by using the one-way message-passing scheme which is easy to use and more stable than the shared memory scheme. In addition, MPCMCC can be easily reused for future work by employing the model based development methodology. We verified the functions of the software component and analyzed its performance in the simulation environment by using two mission-critical computers. The results show that MPCMCC is a suitable software component for fault tolerance in mission-critical computers.

Target Motion Analysis for a Passive Sonar System with Observability Enhancing (가관측성 향상을 통한 수동소나체계의 표적기동 분석)

  • 한태곤;송택렬
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.9-16
    • /
    • 1999
  • As a part of target motion analysis(TMA) with highly noisy bearings-only measurements from a passive sonar system, a nonlinear batch estimator is proposed to provide the initial estimates to a sequential estimator called the modified gain extended Kalman filter(MGEKF). Based on the system observability analysis of passive target tracking, a practical and effective method is suggested to determine the observer maneuvers for improved TMA performance through system observability enhancing. Also suggested is a method to determine observer location for enhanced system observability at the initial phase of TMA from various engagement boundaries which represent the relationship between observer-target relative geometrical data and system observability. The proposed TMA methods are tested by a series of computer simulation runs.

  • PDF

A Passive Ranging Filter with Initial Range Error Compensation (초기 거리오차 보상 피동 거리 추정 필터)

  • 황익호;정상근
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.185-194
    • /
    • 2002
  • To extract relative ranges from LOS(line of sight) information, we propose a passive ranging filter which is suitable for anti-ship missiles in HOJ(home on jam) mode. The proposed filter is devised to cope with the case that a passive ranging filter may include a large initial range estimation error since modem jammers are capable of very long range jamming. In addition, under the assumption that the missile motion is dominant over the HOJ engagement situation, the engagement geometry is modeled by a second order system. A new passive ranging filter is proposed by constructing an extended Kalman filter(EKF) based on the model. And then a least square initial state error estimation algorithm is attached to the EKF. Simulation results show that the proposed filter has a good range estimation performance with small computational load.

DEVS-Based Simulation Model Development for Composite Warfare Analysis of Naval Warship (함정의 복합전 효과도 분석을 위한 DEVS 기반 시뮬레이션 모델 개발)

  • Mi Jang;Hee-Mun Park;Kyung-Min Seo
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.4
    • /
    • pp.41-58
    • /
    • 2023
  • As naval warfare changes to composite warfare that includes simultaneous engagements against surface, underwater, and air enemies, performance and tactical analysis are required to respond to naval warfare. In particular, for practical analysis of composite warfare, it is necessary to study engagement simulations that can appropriately utilize the limited performance resources of the detection system. This paper proposes a DEVS (Discrete Event Systems Specifications)-based simulation model for composite warfare analysis. The proposed model contains generalized models of combat platforms and armed objects to simulate various complex warfare situations. In addition, we propose a detection performance allocation algorithm that can be applied to a detection system model, considering the characteristics of composite warfare in which missions must be performed using limited detection resources. We experimented with the effectiveness of composite warfare according to the strength of the detection system's resource allocation, the enemy force's size, and the friendly force's departure location. The simulation results showed the effect of the resource allocation function on engagement time and success. Our model will be used as an engineering basis for analyzing the tactics of warships in various complex warfare situations in the future.

GRASP Algorithm for Dynamic Weapon-Target Assignment Problem (동적 무장할당 문제에서의 GRASP 알고리즘 연구)

  • Park, Kuk-Kwon;Kang, Tae Young;Ryoo, Chang-Kyung;Jung, YoungRan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.856-864
    • /
    • 2019
  • The weapon-target assignment (WTA) problem is a matter of effectively allocating weapons to a number of threats. The WTA in a rapidly changing dynamic environment of engagement must take into account both of properties of the threat and the weapon and the effect of the previous decision. We propose a method of applying the Greedy Randomized Adaptive Search Procedure (GRASP) algorithm, a kind of meta-heuristic method, to derive optimal solution for a dynamic WTA problem. Firstly, we define a dynamic WTA problem and formulate a mathematical model for applying the algorithm. For the purpose of the assignment strategy, the objective function is defined and time-varying constraints are considered. The dynamic WTA problem is then solved by applying the GRASP algorithm. The optimal solution characteristics of the formalized dynamic WTA problem are analyzed through the simulation, and the algorithm performance is verified via the Monte-Carlo simulation.

Development of a Vulnerability Assessment Model for Naval Ships on a Theater Engagement Analysis (전구급 교전분석을 위한 함정 취약성 평가모델 개발)

  • Lee, Sungkyun;Go, Jinyong;Kim, Changhwan;You, Seungki
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • In actual battlefield environment, the naval ships which have specific missions have to respond to the attack of hostile forces. Especially, in modern warfare, the importance of the survivability of naval ships are increasing due to the high lethality of armaments. Naval ship survivability is generally considered to encompass three constituents, susceptibility, vulnerability and recoverability. Recently, among these three constituents, many researches on vulnerability have been conducted. However, for the vulnerability of naval ships, most of researches are aimed towards the detailed design stages where implementing changes is heavily constrained or even impractical. In this paper, vulnerability assessment model for naval ships on a theater engagement is developed by using M&S technique. By using this model, the characteristics of platform and armaments are reflected on the damage of naval ship. The basic logic of damage assessment is also considered in detail. The damage status of the naval ship is quantified by defining a representative state index of onboard equipment for each system.