DOI QR코드

DOI QR Code

함정의 복합전 효과도 분석을 위한 DEVS 기반 시뮬레이션 모델 개발

DEVS-Based Simulation Model Development for Composite Warfare Analysis of Naval Warship

  • 투고 : 2023.09.18
  • 심사 : 2023.10.15
  • 발행 : 2023.12.31

초록

함정 교전이 수상, 수중, 공중의 적에 대한 동시다발적인 복합전 형태로 발전함에 따라 함정의 복합전 대응을 위한 체계성능 및 전술 분석의 중요성 또한 커지고 있다. 특히, 복합전을 효과적으로 분석하기 위해서는 함정에 탑재된 탐지체계의 제한된 성능자원을 적절히 활용할 수 있는 시뮬레이션 연구가 필요하다. 본 연구는 함정의 복합전 분석을 위해 DEVS(Discrete Event Systems Specifications) 형식론 기반의 시뮬레이션 모델을 제안한다. 제안 모델은 다양한 복합전 상황을 시뮬레이션 하기 위해 전투 플랫폼과 무장 객체를 일반화한 모델을 포함한다. 또한, 제한된 탐지자원을 활용하여 임무를 수행해야 하는 복합전의 특성을 고려하여 탐지성능 할당 알고리즘을 제안하고 함정의 탐지체계 모델에 적용한다. 시뮬레이션 실험으로 수상, 공중, 육지의 적 세력에 대한 복합전 상황을 가정하여 제안 모델을 적용하였다. 탐지체계의 탐지자원 할당 강도, 적군의 규모, 아군의 출항위치를 변경한 시나리오에 대하여 복합전의 효과도 분석을 수행하였고, 자원할당 기능이 교전 시간 및 성공에 미치는 영향을 결과로 제시하였다. 제안 모델의 연구 결과가 향후 다양한 복합전 상황에 대한 함정의 전술 분석에 공학적 근거로 활용되기를 기대한다.

As naval warfare changes to composite warfare that includes simultaneous engagements against surface, underwater, and air enemies, performance and tactical analysis are required to respond to naval warfare. In particular, for practical analysis of composite warfare, it is necessary to study engagement simulations that can appropriately utilize the limited performance resources of the detection system. This paper proposes a DEVS (Discrete Event Systems Specifications)-based simulation model for composite warfare analysis. The proposed model contains generalized models of combat platforms and armed objects to simulate various complex warfare situations. In addition, we propose a detection performance allocation algorithm that can be applied to a detection system model, considering the characteristics of composite warfare in which missions must be performed using limited detection resources. We experimented with the effectiveness of composite warfare according to the strength of the detection system's resource allocation, the enemy force's size, and the friendly force's departure location. The simulation results showed the effect of the resource allocation function on engagement time and success. Our model will be used as an engineering basis for analyzing the tactics of warships in various complex warfare situations in the future.

키워드

과제정보

이 논문은 국방과학연구소의 지원을 받아 수행된 연구 결과입니다. (계약번호: UD210008DD)

참고문헌

  1. Blas, M. J., Leone, H. and Gonnet, S., "DEVS-based formalism for the modeling of routing processes," Software and Systems Modeling, Vol. 21, pp. 1179-1208, 2022. https://doi.org/10.1007/s10270-021-00928-4
  2. Burns, C. M., Bryant, D. J. and Chalmers, B. A., "Boundary, purpose, and values in work-domain models: models of naval command and control," IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, Vol. 35, No. 5, pp. 603-616, 2005. https://doi.org/10.1109/TSMCA.2005.851153
  3. Cheol, G.Y. and Young, G.K. "Security Testing for Naval Ship Combat System Software," IEEE Access, Vol. 9, pp. 66839-66851, 2021.
  4. Choi, S.H., Seo. K.M. and Kim, T.G., "Accelerated Simulation of Discrete Event Dynamic Systems via a Multi-Fidelity Modeling Framework," Applied Sciences, Vol 7, No. 10, pp. 1056, 2017.
  5. Dutta, D., "Probabilistic Analysis of Anti-ship Missile Defence Effectiveness," Defence Science Journal, Vol. 64, No. 2, pp. 123-129, 2014. https://doi.org/10.14429/dsj.64.3532
  6. Gallant, J., Vanderbeke, E. Alouahabi, F. and Schneider, M. "Design Considerations for an Electromagnetic Railgun to be Used Against Antiship Missiles," IEEE Transactions on Plasma Science, Vol. 41, No.10, pp. 2800-2804, 2013. https://doi.org/10.1109/TPS.2013.2278779
  7. Han, J., Pan, Y. and He. J., "Study of Employing Railguns in Close-in Weapon Systems," Proceedings of the 14th Symposium on Electromagnetic Launch Technology, 2008.
  8. He, H., Wang, W., Zhu, Y., Li, X. and Wang, T., "Function Chain-Based Mission Planning Method for Hybrid Combat SoS," IEEE Access, Vol. 7, pp. 100453-100466, 2019. https://doi.org/10.1109/ACCESS.2019.2928524
  9. Hill, R.R., Miller, J.O. and McIntyre, G.A., "Applications of discrete event simulation modeling to military problems," Proceeding of the 2001 Winter Simulation Conference, 2001.
  10. Kang, B. G., Park, H. M, Jang, M. and Seo, K.M., "Hybrid Model-Based Simulation Analysis on the Effects of Social Distancing Policy of the COVID-19 Epidemic," Int J Environ Res Public Health, Vol.18, No. 21, pp. 11264, 2021.
  11. Kang, B.G., Seo, K.M. and Kim, T.G., "Machine learning-based discrete event dynamic surrogate model of communication systems for simulating the command, control, and communication system of systems," SIMULATION: Transactions of The Society for Modeling and Simulation International, Vol. 95, No.8, pp. 673-691, 2019. https://doi.org/10.1177/0037549718809890
  12. Kim, T.G., Kwon, S.J. and Kang, B.G., "Modeling and Simulation Methodology for Defense Systems Based on Concept of System of Systems," Journal of the Korean Institute of Industrial Engineers, Vol. 39, No. 6, pp. 450-460, 2013. https://doi.org/10.7232/JKIIE.2013.39.6.450
  13. Hong, J.H., Choi, C.B. and Kim, T.G., "Battle Experiments of Naval Air Defense with Discrete Event System-based Mission-level Modeling and Simulations," The Journal of Defense Modeling and Simulation, Vol. 8, No.3, pp. 173-187. 2011. https://doi.org/10.1177/1548512911401446
  14. Moon, I.C., Applied Artificial Intelligence Lab., https://aailab.kaist.ac.kr/xe2/research, 2023.
  15. Park, M.H., Go, J.Y., Kim, H.S., Jeon, W.J., Kwon, S.W. and Lee K.W., "Resource Management Method of Multifunction Radar for Simultaneous Tracking of Ballistic Missiles in Combined Tactics," THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE, Vol. 32, No. 5, pp. 484-493, 2021. https://doi.org/10.5515/KJKIEES.2021.32.5.484
  16. Peikang, Z., Jingsong, H. and Jifeng, G., "Design and Analysis of AEGIS Command and Control System Based on C2BMC Architecture," IEEE International Conference on Unmanned Systems, pp. 1012-1018, 2021.
  17. Qin, J. and Wu, X. "Modeling and simulation on the earliest launch time of ship-to-air missile of warship formation in cooperative air-defense," IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, 2016.
  18. Roux, J.N. and Vuuren, J.H.V. "Threat evaluation and weapon assignment decision support: A review of the state of the art," ORiON, Operations Research Society of South Africa, Vol. 23, No. 2, pp. 151-187, 2007. https://doi.org/10.5784/23-2-54
  19. Ryoo, C.K., Whang, I.H. and Tahk, M.J., "3-D Evasive Maneuver Policy for Anti-Ship Missiles Against Close-In Weapon Systems," AIAA Guidance, Navigation, and Control Conference and Exhibit, 11-14 August 2003, Austin, Texas, 2003.
  20. Seo, K.M., Choi, C.B. and Kim, T.G., "Combat Entity Based Modeling Methodology to Enable Joint Analysis of Performance/Engagement Effectiveness - Part 1 : Conceptual Model Design," Journal of the KIMST, Vol. 17, No. 2, pp. 223-234, 2014. https://doi.org/10.9766/KIMST.2014.17.2.223
  21. Serigo, M., Chris, B., Karl, W. and Hugh, G., "Knowledge-Based Resource Management for Multifunction Radar," IEEE SIGNAL PROCESSING MAGAZINE, 2006.
  22. Shim, J.Y. and Wee, S.H. "A Design of Engagement Management Module for Multi Target of Naval Combat Simulator," Proceedings of the Korean Institute of Industrial Engineers, pp.2128-2130, 2018.
  23. Tahk, M.J., S.W., Shim, Hong, S.M., Choi, H.L. and Lee, C.H., "Impact Time Control Based on Time-to-Go Prediction for Sea-Skimming Antiship Missiles," IEEE Transactions on Aerospace and Electronic Systems, Vol. 54, No. 4, pp. 2043-2052, 2018. https://doi.org/10.1109/TAES.2018.2803538
  24. Yun, W.S., Moon, I.C. and Lee, T.E., "Agent-Based Simulation of Time to Decide: Military Commands and Time Delays," Journal of Artificial Societies and Social Simulation, Vol. 8, No. 4, pp. 10, 2015.
  25. Zeigler, B.P., Praehofer, H. and Kim, T.G., Theory of Modeling and Simulation: Integrating Discrete Event and Continuous Complex Dynamic Systems, Academic Press: Cambridge, MA, USA, 2000.
  26. Zhang, K., Zhou, D., Yang, Z., Pan, Q. and Kong, W., "Constrained Multi-Objective Weapon Target Assignment for Area Targets by Efficient Evolutionary Algorithm," IEEE Access, Vol. 7, pp. 176339-176360, 2019. https://doi.org/10.1109/ACCESS.2019.2955482
  27. Palaniappan, S., Sawhney, A., Sarjoughian, H.S. Application of the DEVS framework in construction simulation. Proceedings of the 2006 Winter Simulation Conference (WSC), pp. 2077-2086, 2006.