• Title/Summary/Keyword: EnergyConsumption

Search Result 6,423, Processing Time 0.037 seconds

Recent Studies on Natural Products that Improve Browning (Browning 촉진에 관여하는 최근 천연물의 동향)

  • Lee, Eunbi;Nam, Ju-Ock
    • Journal of Life Science
    • /
    • v.31 no.11
    • /
    • pp.1037-1045
    • /
    • 2021
  • The prevalence of obesity is increasing worldwide, and since obesity is associated with dietary factors and sedentary lifestyles, it is a disease that is readily developing in the modern population. Because obesity is accompanied by serious complications such as diabetes and cardiovascular disease, prevention and treatment are important. Currently, drugs such as liraglutide and phentermine are used to treat obesity by suppressing appetite and inducing gastrointestinal motility delay. However, various side effects may occur, including thyroid cancer, cardiovascular problems, and central nervous system disorders. Therefore, to explore an obesity treatment method with relatively few side effects, a method known as "fat browning" was introduced to change white adipose tissue into brown adipose tissue to increase energy consumption. Ongoing studies are attempting to find effective natural substances to safely induce browning. Many natural substances have been identified. The induction of browning by treatment with natural substances generally involves three mechanisms: positive control of browning-inducing factors, inhibition of differentiation into white adipose tissue, and the activation of mechanisms related to browning. In this study, we describe plant extracts with known browning-inducing effects, such as strawberry, black raspberry, cinnamomum cassia, and Ecklonia stolonifera extracts. We also summarize the underlying mechanisms of action identified thus far, including the signaling pathway mediated by these extracts to induce browning. Furthermore, the effects of brown adipose tissue generated through browning on heart disease as an endocrine organ disruptor are discussed.

Current Status and Prospect of Seaweed-based Biofuels as Renewable Energy Resource (재생가능 에너지원으로서의 해조류 유래 바이오 연료의 현황과 전망)

  • Liu, Jay
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.163-173
    • /
    • 2022
  • Research and development of biofuels as one of the means to mitigate global warming and to avoid fossil fuel depletion has occurred for more than 30 years. However, there has only been limited distribution of a few first- and second-generation biofuels, and widespread supply and consumption of biofuels is still far from a reality. Although a relatively recently studied third-generation biofuel derived from seaweed biomass has been shown to have many advantages, it is yet to be deployed in commercial-scale seaweed biorefineries. This review paper examines the advantages and disadvantages of seaweed biorefineries for the entire value chain covering from seaweed and its cultivation to biofuel production based on an extensive literature search and the author's experience of conducting feasibility studies pertaining to seaweed biorefineries for over 10 years. For this purpose, the literature survey will cover the current status of seaweed production and its research and development worldwide, conversion technologies for biofuel production from seaweed based on bench-scale experiments, and large-scale techno-economic feasibility studies for seaweed conversion to biofuels and bioenergy. In addition, the main problems expected with the commercialization of seaweed-based biofuels will be identified. Finally, the current status of seaweed biorefinery technology and the author's views on its promising future will be summarized.

An Efficient Routing Scheme based on Link Quality and Load Balancing for Wireless Sensor Networks (무선 센서 네트워크에서 링크 상태 및 트래픽 분산 정보를 이용한 효과적인 라우팅 방법)

  • Kim, Sun-Myeng;Yang, Yeon-Mo
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.11-19
    • /
    • 2010
  • ZigBee is a standard for wireless personal area networks(WPANs) based on the IEEE 802.15.4 standard. It has been developed for low cost and low power consumption. There are two alternative routing schemes that have been proposed for the ZigBee standard: Ad-hoc On-Demand Distance Vector(AODV) and tree routing. The tree routing forwards packets from sensors to a sink node based on the parent-child relationships established by the IEEE 802.15.4 MAC topology formation procedure. In order to join the network, a sensor node chooses an existing node with the strongest RSSI(Received signal strength indicator) signal as a parent node. Therefore, some nodes carry a large amount of traffic load and exhaust their energy rapidly. To overcome this problem, we introduce a new metric based on link quality and traffic load for load balancing. Instead of the strength of RSSI, the proposed scheme uses the new metric to choose a parent node during the topology formation procedure. Extensive simulation results using TOSSIM(TinyOS mote SIMulator) show that the CFR scheme outperforms well in comparison to the conventional tree routing scheme.

Hydration properties of OPC with Synthesized Calcium Alumino Ferrite(CAF) (합성 Calcium Alumino Ferrite(CAF) 치환량에 따른 시멘트 수화 특성)

  • Woong-Geol Lee;Myong-Shin Song
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.9-15
    • /
    • 2023
  • The cement is a typical CO2 emission industry. Manufacturing process improvements and increased use of alternative materials are needed to reduce energy consumption and CO2 emissions. This study confirmed the basic characteristics of cement hydration by sintering CAF at low temperature as a CO2 adsorbent material. For the hydration product of the synthetic CAF, crystal phase analysis, porosity, and structural images were confirmed, and the compressive strength was measured. The replacement rate of SCAF was 10, 20, and 100 %, and the compressive strength tended to decrease as the replacement rate increased. In addition, when the SCAF substitution rate is 100 %, the hydration products of the early age are calcium aluminum oxide hydrate (Ca3Al2O6 x H2O) and calcium iron hydroxide (Ca3Fe(OH)12), and at substitution rates of 10 and 20 %, CAF compounds other than general cement hydrates brownmillerite was observed. As for the porosity, the pore size increased and the porosity increased with the increase of the replacement ratio. As a result of this study, CAF manufactured by low-temperature sintering seems to be difficult to use alone and general curing for utilization as a CO2 adsorbing material.

Behavioral responses and tolerance limits of wild goldeye rockfish Sebastes thompsoni to high temperature exposure (고 수온 노출에 따른 자연산 불볼락 Sebastes thompsoni의 행동반응 및 내성 한계)

  • Sung-Jin Yoon;Jin-Hyeok Park
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.3
    • /
    • pp.247-254
    • /
    • 2022
  • To investigate the tolerance limit and critical thermal maximum (CTM), behavioral responses of wild goldeye rockfish Sebastes thompsoni according to exposure to high water temperature were observed using a continuous behavior tracking system. As a result, behavioral index (BI) of S. thompsoni in each temperature (20.0, 25.0, and 30.0℃) showed a significant difference (p<0.05) when compared with the value measured in a stable condition of 15.0℃. The activity level of S. thompsoni exposed to 25.0℃ decreased sharply after 20 hours. Their rest time at the bottom of experiment chamber increased, and their normal swimming and metabolic activities were disturbed. In addition, at a high water temperature of 30.0℃, S. thompsoni reached the limit of resistance and showed a sub-lethal reaction of swimming behavior, with energy consumption in the body increased and all test organisms died. In conclusion, the eco-physiological response of S. thompsoni to water temperature varied greatly depending on the fluctuation range of the exposed temperature and the exposure time. In addition, the tolerance limit of S. thompsoni to high water temperature was predicted to be 25.0-30.0℃. The maximum critical thermal that had a great influence on the survival of this species was found to be around 30.0℃.

Non-linear effects of demand-supply based metro accessibility on land prices in Seoul, Republic of Korea: Using G2SFCA Approach (서울시 수요-공급 기반 지하철 접근성이 토지가격에 미치는 비선형적 영향: G2SFCA 적용을 중심으로)

  • Kang, Chang-Deok
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.2
    • /
    • pp.189-210
    • /
    • 2022
  • Cities around the world have paid attention to public transportation as an alternative to reducing traffic congestion caused by automobile usage, excessive energy consumption, and environmental pollution. This study measures accessibility to subway stations in Seoul using a supply-demand-based accessibility technique. Then, the impacts were analyzed through land prices by use and segment. As a result of analysis using the multilevel hedonic price models, accessibility considering both supply and demand for the subway had a positive effect on both residential and non-residential land prices. The effect was stronger for residential than for non-residential. Further, among the accessibility measured by the three functions, the accessibility by the Exponential function was most suitable for the residential land price, and the accessibility measured by the Power function for the non-residential land price had the highest explanatory power. Also, looking at the impacts by land price segments, it was found that higher access to metro stations had the greatest positive impacts on the most expensive segment of residential and non-residential land prices. The results of this study can be applied not only to identify the impacts of public investment on neighborhoods, but also to support real estate valuation.

An Ecosystem Model and Content Research of the Satellite Information Utilization Business (위성정보 활용 사업의 생태계 모델과 콘텐츠 연구)

  • Seungkuk Baik ;Jinhwa Roh;Hyounjoo Shim;Xuanning Zhu
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1075-1084
    • /
    • 2023
  • Satellite-derived data is collected by observing the Earth and is used in various fields such as national defense, natural disasters, location-based services, infrastructure, environment, energy, marine, and insurance. This study aims to present the virtuous cycle structure of the satellite information data industry and the business ecosystem model of the industry. As a research method, cases were collected and categorized from the following areas: literature, online, application, and content. The results show that the ecosystem model of the satellite information data industry provides an approach to content services in public and commercial areas, and develops various algorithmic technologies to facilitate content production and services at the level of complex general-purpose technologies. Second, in terms of content typology, satellite information data can be subdivided into monitoring content, urban space monitoring content, and satellite information content. Third, the consumption value of satellite content could be subdivided into informational value, environmental, social and governance (ESG) value, educational value, and content value. In order to expand the global content market, Korea will need to focus on creating an ecosystem for the satellite information industry and discovering differentiated content. It will also need to increase the popularization and accessibility of data to the general public and promote the Korean K-Satellite Information Data Industry ecosystem through government support, policy efforts, and policies such as establishing legal systems, increasing investment, and training human resources.

A Study on the Bottom-Emitting Characteristics of Blue OLED with 7-Layer Laminated Structure (7층 적층구조 배면발광 청색 OLED의 발광 특성 연구)

  • Gyu Cheol Choi;Duck-Youl Kim;SangMok Chang
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.244-248
    • /
    • 2023
  • Recently, displays play an important role in quickly delivering a lot of information. Research is underway to reproduce various colors close to natural colors. In particular, research is being conducted on the light emitting structure of displays as a method of expressing accurate and rich colors. Due to the advancement of technology and the miniaturization of devices, the need for small but high visibility displays with high efficiency in energy consumption continues to increase. Efforts are being made in various ways to improve OLED efficiency, such as improving carrier injection, structuring devices that can efficiently recombine electrons and holes in a numerical balance, and developing materials with high luminous efficiency. In this study, the electrical and optical properties of the seven-layer stacked structure rear-light emitting blue OLED device were analyzed. 4,4'-Bis(carazol-9-yl)biphenyl:Ir(difppy)2(pic), a blue light emitting material that is easy to manufacture and can be highly efficient and brightened, was used. OLED device manufacturing was performed via the in-situ method in a high vacuum state of 5×10-8 Torr or less using a Sunicel Plus 200 system. The experiment was conducted with a seven-layer structure in which an electron or hole blocking layer (EBL or HBL) was added to a five-layer structure in which an electron or hole injection layer (EIL or HIL) or an electron or hole transport layer (ETL or HTL) was added. Analysis of the electrical and optical properties showed that the device that prevented color diffusion by inserting an EBL layer and a HBL layer showed excellent color purity. The results of this study are expected to greatly contribute to the R&D foundation and practical use of blue OLED display devices.

Adsorption Characteristics of Biochar from Wood Waste by KOH, NaOH, ZnCl2 Chemical Activation (폐목재를 이용한 KOH, NaOH, ZnCl2 화학적 활성화로 생성된 바이오차의 흡착특성에 관한 연구)

  • MinHee Won;WooRi Cho;Jin Man Chang;Jai-young Lee
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.272-278
    • /
    • 2023
  • There is a lot of interest in methods for pollutants using adsorption, and recent research is being conducted to show that biochar can be used to remove organic and inorganic pollutants. In particular, wood waste as waste biomass requires a biomass recycling method, and a method to increase the adsorption capacity of biochar produced using wood waste is needed. Biochar is created by Hydrothermal carbonization (HTC) using, which uses low temperature and high pressure, has low energy consumption and does not require moisture removal pretreatment, and biochar is created through chemical activation using KOH, NaOH, and ZnCl2 chemicals. The adsorption characteristics of biochar were determined by analyzing iodine adsorptivity, specific surface area, pore diameter, pore volume, pore distribution, and SEM according to the activation. The results of analyzing the selecting biochar by activating the biochar produced at HTC 300℃, 4 hr by KOH, NaOH, and ZnCl2 chemicals, the specific surface area was 774~1.387 m2/g, showing a high specific surface area similar to activated carbon, and it was confirmed that micropores with an average pore diameter in the range of 21~24 Å were formed. As a result of SEM observation, the surface was uniform with a certain shape depending on activation. It was confirmed that one pore was developed and the number of pores increased.

Examining Diurnal Thermal Variations by Urban Built Environment Type with ECOSTRESS Land Surface Temperature Data: Evidence from Seoul, Korea (도시 건조환경 유형에 따른 서울시 주간 지표면 온도 변동성 분석: ECOSTRESS 데이터의 활용)

  • Gyuwon Jeon;Yujin Park
    • Journal of the Korean Regional Science Association
    • /
    • v.40 no.2
    • /
    • pp.107-130
    • /
    • 2024
  • Urban land surface temperature (LST) change is a major environmental factor that affects the thermal comfort, energy consumption, and health of urban residents. Most studies that explored the relationship between LST and urban built-environment form analyzed only midday LST. This study explores the diurnal variation of summertime LST in Seoul using ECOSTRESS data, which observes LST at various times of the day and analyzes whether the LST variation differs by built environment type. Launched in 2018, ECOSTRESS operates in a non-sun-synchronous orbit, observing LST with a high resolution of 70 meters. This study collected data from early morning (6:25) to evening (17:26) from 2019 to 2022 to build time-series LST. Based on greenery, water bodies, and building form data, eight types of Seoul's built environment were derived by hierarchical clustering, and the LST fluctuation characteristics of each cluster were compared. The results showed that the spatial disparity in LST increased after dawn, peaked at noon, and decreased again, highlighting areas with rapid versus stable LST changes. Low-rise and high-rise compact districts experienced fast, high temperature increases and high variability, while low-density apartments experienced moderate LST increases and low variability. These results suggest urban forms that can mitigate rapid daytime heating.