• Title/Summary/Keyword: Energy-stable method

Search Result 652, Processing Time 0.025 seconds

Dynamic Reserve Estimating Method with Consideration of Uncertainties in Supply and Demand (수요와 공급의 불확실성을 고려한 시간대별 순동예비력 산정 방안)

  • Kwon, Kyung-Bin;Park, Hyeon-Gon;Lyu, Jae-Kun;Kim, Yu-Chang;Park, Jong-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1495-1504
    • /
    • 2013
  • Renewable energy integration and increased system complexities make system operator maintain supply and demand balance harder than before. To keep the grid frequency in a stable range, an appropriate spinning reserve margin should be procured with consideration of ever-changing system situation, such as demand, wind power output and generator failure. This paper propose a novel concept of dynamic reserve, which arrange different spinning reserve margin depending on time. To investigate the effectiveness of the proposed dynamic reserve, we developed a new short-term reliability criterion that estimates the probability of a spinning reserve shortage events, thus indicating grid frequency stability. Uncertainties of demand forecast error, wind generation forecast error and generator failure have been modeled in probabilistic terms, and the proposed spinning reserve has been applied to generation scheduling. This approach has been tested on the modified IEEE 118-bus system with a wind farm. The results show that the required spinning reserve margin changes depending on the system situation of demand, wind generation and generator failure. Moreover the proposed approach could be utilized even in case of system configuration change, such as wind generation extension.

Enrichment of $CO_2$-Fixing Bacteria in Cylinder-Type Electrochemical Bioreactor with Built-In Anode Compartment

  • Jeon, Bo-Young;Jung, Il-Lae;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.590-598
    • /
    • 2011
  • Bacterial assimilation of $CO_2$ into stable biomolecules using electrochemical reducing power may be an effective method to reduce atmospheric $CO_2$ without fossil fuel combustion. For the enrichment of the $CO_2$-fixing bacteria using electrochemical reducing power as an energy source, a cylinder-type electrochemical bioreactor with a built-in anode compartment was developed. A graphite felt cathode modified with neutral red (NR-graphite cathode) was used as a solid electron mediator to induce bacterial cells to fix $CO_2$ using electrochemical reducing power. Bacterial $CO_2$ consumption was calculated based on the variation in the ratio of $CO_2$ to $N_2$ in the gas reservoir. $CO_2$ consumed by the bacteria grown in the electrochemical bioreactor (2,000 ml) reached a maximum of approximately 1,500 ml per week. Time-coursed variations in the bacterial community grown with the electrochemical reducing power and $CO_2$ in the mineral-based medium were analyzed via temperature gradient gel electrophoresis (TGGE) of the 16S rDNA variable region. Some of the bacterial community constituents noted at the initial time disappeared completely, but some of them observed as DNA signs at the initial time were clearly enriched in the electrochemical bioreactor during 24 weeks of incubation. Finally, Alcaligenes sp. and Achromobacter sp., which are capable of autotrophically fixing $CO_2$, were enriched to major constituents of the bacterial community in the electrochemical bioreactor.

Thermal Stability Enhanced Ge/graphene Core/shell Nanowires

  • Lee, Jae-Hyeon;Choe, Sun-Hyeong;Jang, Ya-Mu-Jin;Kim, Tae-Geun;Kim, Dae-Won;Kim, Min-Seok;Hwang, Dong-Hun;Najam, Faraz;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.376-376
    • /
    • 2012
  • Semiconductor nanowires (NWs) are future building block for nano-scale devices. Especially, Ge NWs are fascinated material due to the high electrical conductivity with high carrier mobility. It is strong candidate material for post-CMOS technology. However, thermal stability of Ge NWs are poor than conventional semiconductor material such as Si. Especially, when it reduced size as small as nano-scale it will be melted around CMOS process temperature due to the melting point depression. Recently, Graphene have been intensively interested since it has high carrier mobility with single atomic thickness. In addition, it is chemically very stable due to the $sp^2$ hybridization. Graphene films shows good protecting layer for oxidation resistance and corrosion resistance of metal surface using its chemical properties. Recently, we successfully demonstrated CVD growth of monolayer graphene using Ge catalyst. Using our growth method, we synthesized Ge/graphene core/shell (Ge@G) NW and conducted it for highly thermal stability required devices. We confirm the existence of graphene shell and morphology of NWs using SEM, TEM and Raman spectra. SEM and TEM images clearly show very thin graphene shell. We annealed NWs in vacuum at high temperature. Our results indicated that surface melting phenomena of Ge NWs due to the high surface energy from curvature of NWs start around $550^{\circ}C$ which is $270^{\circ}C$ lower than bulk melting point. When we increases annealing temperature, tip of Ge NWs start to make sphere shape in order to reduce its surface energy. On the contrary, Ge@G NWs prevent surface melting of Ge NWs and no Ge spheres generated. Furthermore, we fabricated filed emission devices using pure Ge NWs and Ge@G NWs. Compare with pure Ge NWs, graphene protected Ge NWs show enhancement of reliability. This growth approach serves a thermal stability enhancement of semiconductor NWs.

  • PDF

Conformational Analysis and Electronic Properties of 2-Cyano-3-(thiophen-2-yl)acrylic Acid in Sensitizers for Dye-sensitized Solar Cells: A Theoretical Study

  • Balanay, Mannix P.;Kim, Se-Mi;Lee, Mi-Jung;Lee, Sang-Hee;Kim, Dong-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.2077-2082
    • /
    • 2009
  • The conformational and electronic properties of 2-cyano-3-(thiophen-2-yl)acrylic acid (TCA) in analogues used as sensitizers in dye-sensitized solar cells was examined using density functional theory (DFT) and natural bond orbital analysis methods. A relaxed potential energy surface scan was performed on NKX-2677 by rotating the C-C bond between the thiophene and cyanoacrylic acid which yielded activation energy barriers of about 13 kcal/mol for both E and Z configurations. The most stable conformation of all the analogues was E-180 except for NKX-2587 which has an electrostatic repulsion between the oxygen of the coumarin and the nitrogen of the cyanoacrylic acid. The increase in the electron delocalization between the thiophene and cyanoacrylic acid influences the stability for most of the analogues. But for NKX-2600, even though there was a greater deviation from the planarity of TCA, the stability was mainly due to the presence of a weak hydrogen bond between the hydrogen of the methyl group of the amine located in the donor moiety and the nitrogen of the cyanoacrylic acid. The vertical excitation energies of the analogues containing TCA were calculated by time-dependent DFT method. There were slight differences in its vertical excitation energies but the oscillator strengths vary significantly especially in the case of NKX-2600.

A Study on Cu Based Catalysts for Water Gas Shift Reaction to Produce Hydrogen from Waste-Derived Synthesis Gas (폐기물 가스화 합성가스로부터 수소 생산을 위한 수성가스전이 반응용 Cu 기반 촉매 연구)

  • Na, Hyun-Suk;Jeong, Dae-Woon;Jang, Won-Jun;Lee, Yeol-Lim;Roh, Hyun-Seog
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.3
    • /
    • pp.227-233
    • /
    • 2014
  • Simulated waste-derived synthesis gas has been tested for hydrogen production through water-gas shift (WGS) reaction over supported Cu catalysts prepared by co-precipitation method. $CeO_2$, $ZrO_2$, MgO, and $Al_2O_3$ were employed as supports for WGS reaction in this study. $Cu-CeO_2$ catalyst exhibited excellent catalytic activity as well as 100% $CO_2$ selectivity for WGS in severe conditions ($GHSV=40,206h^{-1}$ and CO concentration = 38.0%). In addition, $Cu-CeO_2$ catalyst showed stable CO conversion for 20h without detectable catalyst deactivation. The high activity and stability of $Cu-CeO_2$ catalyst are correlated to its easier reducibility, high oxygen mobility/storage capacity of $CeO_2$.

Research and Development of a 2.9 Liter Light-duty DME Truck Using Common Rail Fuel Injection Systems (커먼레일 연료분사 시스템을 장착한 2.9 리터급 경량 DME 트럭의 연구 및 개발)

  • Jeong, Soo-Jin;Park, Jung-Kwon;Oh, Se-Doo;Lee, Gee-Soo;Lim, Ock-Taek;Pyo, Young-Dug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.107-116
    • /
    • 2012
  • In this study, the trucks(2.9-liter) have been developed to use DME as fuel, and performance test of the vehicle's DME engine, power, emissions, fuel economy and vehicle aspects was conducted. For experiments, the fuel system(common-rail injectors and high-pressure pump included) and the engine control logic was developed, and ECU mapping was performed. As a result, the rail pressure from 40MPa to approximately 65% increase compared to the base injector has been confirmed that. Also, the pump discharge flow is 15.5 kg/h when the fuel rail pressure is 400rpm(40MPa), and the pump discharge flow is 92.1 kg/h when the fuel rail pressure is 2,000rpm(40MPa). The maximum value of full-load torque capability is 25.5 kgfm(based on 2,000 rpm), and more than 90% compared to the level of the diesel engine were obtained. The DME vehicle was developed in this study, 120 km/h can drive to the stable, and calculated in accordance with the carbon-balance method of fuel consumptions is 5.7 km/L.

Development of Water-Source Heat Pump System Using Riverbank Filtration Water on the Waterfront (친수지역 강변여과수 열원을 활용한 냉난방시스템 개발)

  • Cho, Yong;Kim, Dea Geun;Moon, Jong-Pil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.201.2-201.2
    • /
    • 2011
  • A water-source heat pump system has been developed for cooling and heating of a green house on the waterfront in Jinju. In order to supply a heat source/sink of water in alluvium aquifer to the heat pump system, the riverbank filtration facility (two pumping wells and one recharge well) for water intake and injection has been constructed. To pump and recharge water sufficiently, the geometric design such as depth and diameter for the wells have been completed, and details of the well such as slot size and length of the screen and filter pack size have been designed based on the practical and theoretical design method including D30 technique. For the investigation of the hydrogeological characteristics, step-drawdown test, long-term pumping test, and recovery test have been carried out for two developed pumping wells. Step-drawdown test has been performed on 4 step flowrates of 150, 300, 450, $600m^3$/day for 1 hour, and long-term pumping test on flowrate of $500m^3$/day for 24 hours, and recovery test for 6 hours. Since the underground water filtrated by riverbank is flowing smoothly into the well, the water level goes down slightly for the long-term test. Consequently, the stable pumping flowrate for two pumping well has been predicted at least over $1,647m^3$/day which is larger than the flowrate of $1,000m^3$/day for a 60 RT heat pump system.

  • PDF

Battery Discharge System Configuration using Photovoltaic Simulator and PCS (태양광 시뮬레이터와 PCS를 이용한 배터리 방전시스템 구성)

  • Jeong, Da-Woom;Park, Sung-Min;Park, Seong-Mi;Park, Sung-Jun;Moon, Seung-Pil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.3
    • /
    • pp.491-498
    • /
    • 2020
  • Recently, In the production line of batteries, charge and discharge tests are essential to verify battery characteristics. In this case, the battery charging uses a unidirectional AC/DC converter capable of output voltage and current control, and the discharge uses a resistive load. Since this method consumes energy during discharge, it must be replaced with a bi-directional AC/DC converter system capable of charging and discharging. Although it is difficult to replace the connected inverter part of the bi-directional AC/DC converter system due to the high cost, the spread of the solar-connected inverter rapidly increases as the current solar supply business is activated, and thereby the solar-connected type Inverter prices are plunging. If it can be used as a power converter for battery discharge without program modification of the solar-powered inverter, it will have competition. In this paper, propose a new battery discharge system using a combination of a photovoltaic DC/DC simulator and photovoltaic PCS using a battery to be used as a power converter for battery discharge without program modification of a low-cost photovoltaic inverter. In addition, propose an optimal solar characteristic curve for the stable operation of PCS. The validity of the proposed system was verified using a 500[W] class solar DC/DC simulator and a solar PCS prototype.

Biogenic Volatile Organic Compounds (BVOC) Emissions from Fruit Samples Based on Sorbent Tube Sampling and Thermal Desorption (ST-TD) Analysis (흡착튜브 - 열탈착 정량분석 기법에 기반한 과일시료로부터 자연적 휘발성유기화합물의 배출특성 연구)

  • Ahn, Jeong-Hyeon;Kim, Ki-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.757-772
    • /
    • 2013
  • In this study, a combination of sorbent tube (ST)-thermal desorption (TD)-gas chromatography (GC)-mass spectrometry (MS) was used for quantitative analysis of liquid phase standards of 10 BVOC ((1) (+)-${\alpha}$-pinene, (2) (+)-${\beta}$-pinene, (3) ${\alpha}$-phellandrene, (4) (+)-3-carene, (5) ${\alpha}$-terpinene, (6) p-cymene, (7) (R)-(+)-limonene, (8) ${\gamma}$- terpinene, (9) myrcene, and (10) camphene). The results of BVOC calibration yielded comparatively stable pattern with response factor (RF) of 23,560~50,363 and coefficient of determination ($R^2$) of 0.9911~0.9973. The method detection limit (MDL) of BVOC was estimated at 0.03~0.06 ng with the reproducibility of 1.30~5.13% (in terms of relative standard error (RSE)). Emissions of BVOC were measured from four types of fruit samples ((1) tangerine (TO), (2) tangerine peel (TX), (3) strawberry (SO), and (4) sepals of strawberry (SX)). The sum of BVOC flux (${\sum}flux$ (BVOC) in ng/hr/g) for each sample was seen on the descending order of (1) TX=291,614, (2) TO=2,190, (3) SO=1,414, and (4) SX=2,093. If the results are compared between the individual components, the highest flux was seen from (R)-(+)-limonene (265,395 ng/hr/g) from TX sample.

On the Rotational Barrier of Organic Molecules (I). Role of Axial Carbon in Ethane (유기분자의 내부 회전장벽에 관한 이론적 연구 (제1보). 에탄에서의 중심 탄소의 역할)

  • Young Sik Kim;Hojing Kim
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.117-127
    • /
    • 1982
  • In order to analyze the role of axial carbon atoms in rotational barrier of ethane, we take the carbonless ethane, as a model, which is made of six hydrogens in coordinates of ethane. The energy of the system is calculated by McWeeny's open-shell restricted Hartree-Foch selfconsistent-field (RHF-SCF) method, and the transition density on the staggered-to-eclipsed rotation is examined. As being expected, the eclipsed form of the model is more stable than the staggered one. Through the transition density comparison of this model and real ethane, it is found that the existence of the axial carbon atoms induces the electronic density to be diluted in the vicinity of protonic sites and to be attracted to the region of carbon atoms or further to C-C bond region as the barrier is traversed. This migration of electronic charge tell us that the barrier to the internal rotation of ethane originates from the fact that the magnitude of electronic energy depression is not large enough to offset the increased nuclear-nuclear repulsion on the staggered-to-eclipsed rotation.

  • PDF