• Title/Summary/Keyword: Energy-saving device

Search Result 198, Processing Time 0.02 seconds

Power supply performance photovoltaic (PV) system for 3-ton class fishing vessel (3톤급 연안어선용 태양광 발전장치의 전원공급 성능)

  • Jeong, Seong-Jae;Lee, Dong-Gil;Park, Seong-Wook;Kim, Hee-Jin
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.4
    • /
    • pp.487-494
    • /
    • 2014
  • This study describes the result on PV system for evaluating the performance of small fishing boats. Photovoltaic system with 200 watts power generation facilities on the 3-ton fishing boat was carried. Load test was performed on the condition that the work lamps lit during night operations. As a result the performance can be used for more than two hours at 60 watt work lamps. The load test was performed on the condition that fishing vessels are on the cruising condition at sea. The solar power systems have been investigated as a power generation efficiency of about 36.55%. Additional tests show that the power generation efficiency is difficult to expect a maximum of 50% or more. Fuel consumption of fishing boats by installing a solar power system is reduced. Also the PV system is useful for the verification of their availability for fishing vessels as well as the satisfaction of the fishermen. The results for the durability of the photovoltaic device is acceptable, including a solar panel, controller and the performance exhibited no breakage in the harsh marine environment or failure so far. The installed PV system was confirmed that the durability with at least 2 years.

Numerical Simulation for Improvement in Resistance Performance by Bulb Retrofit under Optimal Trim Conditions (최적 트림 조건하에서 벌브개조를 통한 선박저항성능 개선 연구)

  • Park, Hyunsuk;Seo, Dae-Won
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1070-1077
    • /
    • 2022
  • The International Maritime Organization has recently strengthened its marine environment regulations. The energy efficiency index has long been an important indicator of ship design, and now, energy efficiency is being enforced for existing ships as well as new ships. To increase the energy efficiency of existing ships, methods such as retrofitting the bow bulb, selecting an optimized trim during ship operation, and installing an energy saving device have been applied. In this study, the ship resistance was numerically simulated using computational fluid dynamics (CFD) under various bow and stern trim conditions. In addition, the bulb was redesigned to further improve the resistance performance under the selected trim conditions. When the improved bulb was applied, the effective horse power increased by approximately 5%. It is, however, necessary to verify whether the redesigned bulb can reduce ship resistance in waves.

A Case Study of GHG Reduction Based on Electricity Consumption Pattern of Individual Rooms : In case of Seoul National University (실별 전력 소비패턴에 의거한 온실가스 감축 잠재량 산정 - 서울대학교 관악 캠퍼스를 대상으로 -)

  • Kim, Seok-Young;Park, Moonseo;Lee, Hyun-Soo;Kim, Sooyoung;Jung, Hye-Jin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.4
    • /
    • pp.55-64
    • /
    • 2013
  • As GHG target management is introduced in Korea, designated establishment takes responsibilities to reduce more than 30% of expected GHG emission until 2020. Although decreasing GHG has been requested to universities which consume great amount of energy, there are difficulties to apply high cost countermeasures. Therefore, this research suggest a low cost, easily-applicable energy saving method, and derive potential GHG reduction amount in the case of SNU, Kwan-ak campus. First of all, 11 rooms of different use were chosen as the samples, and energy consumption in each room was measured. Standard models for each room were built through researching on the electric devices in each room. Moreover, energy consumption was computed for each devices through analyzing the pattern of electricity consumption. 32 GHG reduction technology and action program were chosen, and they were applied to the standard models for individual rooms. Through multiplying energy reduction rate of each program to energy consumption of each electric device, maximum energy reduction of each electric device is derived. Through that, Maximum GHG reduction for individual rooms and each month and the total GHG reduction capacity of Kwan-ak campus were computed. It was found out that approximately $5,311tCO_2$-eq can be reduced, when reduction technology and action program suggested by this research are applied. It appeared 24.48% of requested reduction amount to SNU can be reduced, till 2016.

Development of the Protocol of the High-Visibility Smart Safety Vest Applying Optical Fiber and Energy Harvesting (광섬유와 압전 에너지 하베스팅을 적용한 고시인성 스마트 안전조끼의 개발)

  • Park, Soon-Ja;Jung, Jun-Young;Moon, Min-Jung
    • Science of Emotion and Sensibility
    • /
    • v.24 no.2
    • /
    • pp.25-38
    • /
    • 2021
  • The aim of this study is to protect workers and pedestrians from accidents at night or bad weather by attaching optical fiber to existing safety clothing that is made only with fluorescent fabrics and retroreflective materials. A safety vest was designed and manufactured by applying optical fiber, and energy-harvesting technology was developed. The safety vest was designed to emit light using the automatic flashing of optical fibers attached to the film, and an energy harvester was manufactured and attached to drive the light emission of the optical fiber more continuously. As a result, first, the vest wearer' body was recognized from a distance through the optical fiber and retroreflection, which helped prevent accidents. Thus, this concept helps in saving lives by preventing accidents during night-time work on the roadside or activities of rescue crew and sports activities, or by quickly finding the point of an accident with a signal that changes the optical fiber light emission. Second, to use the wasted energy, a piezoelectric-element power generation system was developed and the piezoelectric-harvesting device was mounted. Potentially, energy was efficiently produced by activating the effective charging amount of the battery part and charging it auxiliary. In the existing safety vest, detecting the person wearing the vest is almost impossible in the absence of ambient light. However, in this study, the wearer could be found within 100 m by the light emission from the safety vest even with no ambient light. Therefore, in this study, we will help in preventing and reducing accidents by developing smart safety clothing using optical fiber and energy harvester attached to save lives.

Designing of Safe Duct for Leisure Boat with Wing Section (익형 형상을 적용한 레저 선박용 안전 덕트 개발)

  • Sang-Jun Park;Jin-Wook Kim;Moon-Chan Kim;Woo-Seok Jin;Sa-Kyo Jung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.6
    • /
    • pp.424-432
    • /
    • 2023
  • This study deals with the design of a safety device around a leisure boat propeller. The safety device is to be designed to minimize performance degradation attached to propulsors in coastal waters. These devices, important for preventing propeller accidents, negatively gives influence boat performance, especially at higher speeds. In order to minimize the negative effect, the accelerating ducts, normally used in ESDs (Energy Saving Devices) have been chosen as a safety device. The present study aims to design an optimal duct (minimizing negative effect) through the parametric study. Based on the Marine 19A nozzle, the nozzle's thickness and angle were varied to obtain the optimum parameter in the preliminary design by the computational fluid dynamics program Star-CCM+ Ver. 15.02. In the detailed design, a NACA 4-digit Airfoil shape resembling the Marine 19A by modification at the trailing edge was chosen and the optimum shape was chosen according to variation of camber, thickness, and incidence angle for optimization. The optimally designed duct shows a speed decrease of about 10% in the sea trial result, which is much smaller than the normal speed decrease of at least 30%. The present designing method can give wide applications to the leisure boat because the wake is almost the same due to using the outboard propulsor.

Analysis and Design of Profiling Adaptor for XML based Energy Storage System (XML 기반의 에너지 저장용 프로파일 어댑터 분석 및 설계)

  • Woo, Yongje;Park, Jaehong;Kang, Mingoo;Kwon, Kiwon
    • Journal of Internet Computing and Services
    • /
    • v.16 no.5
    • /
    • pp.29-38
    • /
    • 2015
  • The Energy Storage System stores electricity for later use. This system can store electricity from legacy electric power systems or renewable energy systems into a battery device when demand is low. When there is high electricity demand, it uses the electricity previously stored and enables efficient energy usage and stable operation of the electric power system. It increases the energy usage efficiency, stabilizes the power supply system, and increases the utilization of renewable energy. The recent increase in the global interest for efficient energy consumption has increased the need for an energy storage system that can satisfy both the consumers' demand for stable power supply and the suppliers' demand for power demand normalization. In general, an energy storage system consists of a Power Conditioning System, a Battery Management System, a battery cell and peripheral devices. The specifications of the subsystems that form the energy storage system are manufacturer dependent. Since the core component interfaces are not standardized, there are difficulties in forming and operating the energy storage system. In this paper, the design of the profile structure for energy storage system and realization of private profiling system for energy storage system is presented. The profiling system accommodates diverse component settings that are manufacturer dependent and information needed for effective operation. The settings and operation information of various PCSs, BMSs, battery cells, and other peripheral device are analyzed to define profile specification and structure. A profile adapter software that can be applied to energy storage system is designed and implemented. The profiles for energy storage system generated by the profile authoring tool consist of a settings profile and operation profile. Setting profile consists of configuration information for energy device what composes energy saving system. To be more specific, setting profile has three parts of category as information for electric control module, sub system, and interface for communication between electric devices. Operation profile includes information in relation to the method in which controls Energy Storage system. The profiles are based on standard XML specification to accommodate future extensions. The profile system has been verified by applying it to an energy storage system and testing charge and discharge operations.

Study on Improving Energy-Efficiency of Set-top Box (셋톱박스의 에너지 효율 개선에 관한 연구)

  • Lee, Sang-Hak;Yun, Jung-Mee
    • The KIPS Transactions:PartD
    • /
    • v.18D no.3
    • /
    • pp.197-204
    • /
    • 2011
  • Set-top Box which receives broadcasting signal and delivers it to display device such as TV usually doesn't have low-power mode, standby power mode. On the other side, most consumer electronics support standby power mode. The main reasons come from technical barriers and operational stability. Set-top box normally consumes 80~90% power of active mode even though turning off. This is much higher compared to other consumer electronics which consume less than 1W in standby power mode. However, most developed countries including Korea are enforcing the regulations which enhance energy efficiency of set-top box. This paper describes design and development of low-power set-top box. Key technologies are SoC supporting low-power mode, system hardware and software operating in separated power mode, and middleware managing the power with broadcasting system. Finally, we show energy saving expectation through development and proliferation.

Energy efficiency standard for imaging equipments using electrophotograph printing (전자사진 기술을 사용하는 이미징 장치의 에너지 효율 기준 연구)

  • Park, Jun-Young;Yoon, Wonsik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2433-2442
    • /
    • 2014
  • In this paper, an efficiency grade standard for imaging equipments using electrophotograph printing such as a printer, copier, fax, and MFD (Multi Function Device) is studied. By emphasizing domestic standby power reduction program's problem, and proposing the necessity of efficiency management, the efficiency standard is developed by reliable data registered in domestic standby power reducing program. To find an efficiency indication for grade, correlation analysis is used and as a result, printing speed has the biggest correlation coefficient. By applying the efficiency indication for grade, the proposed certification standard is established in 1st to 5th level products and super-high-efficiency product (energy frontier) which is better than 1st to 5th level products. If these efficiency standards are chosen by government policies, it is expected to save 65 billion won reduction of energy cost per year.

A Comparison of Performance on the Orthogonal and Refraction Heat Exchanger Shape in Air Ventilation System (환기시스템의 굴절 및 평판형 열교환기 형상에 따른 성능비교)

  • Hyeon, Hyeong-Ho;Jeong, Byeong-Ho;Kim, Ji-won;Lee, Kang-yeon
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.7
    • /
    • pp.281-287
    • /
    • 2019
  • Application of heat recovery system applying air supply and cexhaust ventilation device essential in energy management system for the optimum ventilation system utilization and energy saving. This is a key element of infrastructure technology for high-efficiency energy buildings, because it can save heating and cooling energy in winter and summer. In this paper, heat transfer efficiency was simulated using paper, plastic, and aluminum materials that was examined to compare heat exchanger performance under uniform flow conditions. We tested heat transfer efficiengy according to the shape of two of that, one is orthogonal and the other is refraction shape. Based on the simulation results, it is expected to contribute to the production of high performance heat exchanger with heat transfer performance and pressure loss.

A Study on the Feasibility of Applying Solar Power Generation Systems to Merchant Ships for Energy Saving (에너지 절감을 위한 태양광 발전시스템의 선박 적용 타당성 연구)

  • Kim, Kyunghwan;Jeon, Hyeonmin;Kim, Seongwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1067-1073
    • /
    • 2021
  • Regulations to reduce greenhouse gas emissions from ships are gradually being strengthened. EEXI (Energy Efficiency Existing Index) has been introduced in existing ships, and various studies are aimed at achieving the greenhouse gas emission reduction target are currently underway. In this study, we proposed a method to reduce greenhouse gas emissions through reducing fuel oil consumption by applying a solar power generation system to a pure and truck carrier among existing ships engaged in international voyages. The proposed photovoltaic power generation system consists of a photovoltaic module, an energy storage system, and a power conversion device. To confirm applicability, the system was modeled through a power electronics program, and a simulation was performed. In addition, economic analysis was conducted to check the feasibility of application to real ships, and it was confirmed that significant results were derived in the economical aspect after about 11 years had elapsed.