• Title/Summary/Keyword: Energy-harvesting

Search Result 899, Processing Time 0.023 seconds

Development of the Energy Harvesting System Using Door Torque (도어의 회전력을 이용한 에너지 획득 시스템 개발)

  • Kim, Jin-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2048-2053
    • /
    • 2011
  • The aim of this paper is to propose an energy harvesting system by converting mechanical energy of revolving door into electrical energy. The method of energy harvesting system is discussed on two methods: one is the energy-harvester using gear shaft coupling system, and the other is the energy-harvester using spiral spring system. The former is generated by coupling the shaft of rotating door with generator system, while the latter is generated by connecting end-effector of door with the string of generator system. We present the experimental results for two developed energy-harvester. Finally, a comparison between these results is presented to show the validity of energy-harvester.

Adaptive Data Aggregation and Compression Scheme for Wireless Sensor Networks with Energy-Harvesting Nodes

  • Jeong, Semi;Kim, Hyeok;Noh, Dong Kun;Yoon, Ikjune
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.3
    • /
    • pp.115-122
    • /
    • 2017
  • In this paper, we propose an adaptive data aggregation and compression scheme for wireless sensor networks with energy-harvesting nodes, which increases the amount of data arrived at the sink node by efficient use of the harvested energy. In energy-harvesting wireless sensor networks, sensor nodes can have more than necessary energy because they harvest energy from environments continuously. In the proposed scheme, when a node judges that there is surplus energy by estimating its residual energy, the node compresses and transmits the aggregated data so far. Conversely, if the residual energy is estimated to be depleted, the node turns off its transceiver and collects only its own sensory data to reduce its energy consumption. As a result, this scheme increases the amount of data collected at the sink node by preventing the blackout of relay nodes and facilitating data transmission. Through simulation, we show that the proposed scheme suppresses the occurrence of blackout nodes and collect the largest amount of data at the sink node compared to previous schemes.

Energy-Aware Data Compression and Transmission Range Control Scheme for Energy-Harvesting Wireless Sensor Networks (에너지 수집형 무선 센서 네트워크를 위한 에너지 적응형 데이터 압축 및 전송 범위 결정 기법)

  • Yi, Jun Min;Oh, Eomji;Noh, Dong Kun;Yoon, Ikjune
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.4
    • /
    • pp.243-249
    • /
    • 2016
  • Energy-harvesting nodes in wireless sensor networks(WSNs) can be exhausted due to a heavy workload even though they can harvest energy from their environment. On contrast, they can sometimes fully charged, thus waste the harvested energy due to the limited battery-capacity. In order to utilize the harvested energy efficiently, we introduce a selective data compression and transmission range control scheme for energy-harvesting nodes. In this scheme, if the residual energy of a node is expected to run over the battery capacity, the node spends the surplus energy to exploit the data compression or the transmission range expansion; these operations can reduce the burden of intermediate nodes at the expanse of its own energy. Otherwise, the node performs only basic operations such as sensing or transmitting so as to avoid its blackout time. Simulation result verifies that the proposed scheme gathers more data with fewer number of blackout nodes than other schemes by consuming energy efficiently.

Electric energy harvesting using piezoelectric actuator driven by geared motor (압전 액추에이터를 이용한 에너지 수확)

  • Yun, So-Nam;Kim, Dong-Gun;Ham, Young-Bog;Park, Jung-Ho;Choi, Sang-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1463-1468
    • /
    • 2007
  • This paper presents the possibility of the electric energy harvesting using piezoelectric actuator which is operated by geared motor. The geared motor consisting of oval shape cam and speed controller was operated in the range of 40${\sim}$172rpm. The PZT actuator of $36L{\times}13W{\times}0.6H$ was used for energy harvesting and the results of the theoretical model were verified by comparing it with the measured response of a experimental setup. Experimental study for obtaining the optimal operating conditions, such as displacement variation of the PZT actuator and motor speed variation, was achieved. A power of 0.02mW at the geared motor speed of 172rpm and the PZT actuator maximum displacement of $500{\mu}m$ was measured. In this study, it was confirmed that the wind power can be used for MEMS based sensor operating and windmill health monitoring one.

  • PDF

An Adaptive Scheduling Scheme for Cooperative Energy Harvesting Networks

  • Ammar, Ahmed;Reynolds, Daryl
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.256-264
    • /
    • 2015
  • Energy harvesting devices have been proposed for sensor networking applications where batteries cannot be replaced, and cooperative communication schemes have been used to increase energy efficiency for wireless systems. Here, we develop transmission scheduling schemes for multi-terminal cooperative energy harvesting networks that maximize the packet delivery ratio, i.e., the probability that an event is reported successfully. We see that the proposed scheme provides virtually the same performance as the state-of-the-art threshold-based scheme, but does not require auxiliary parameter optimization. The proposed scheme also permits extensions to multiple cooperating nodes and sources, and it can be modified to accommodate fairness constraints.

Sum-Rate Optimal Power Policies for Energy Harvesting Transmitters in an Interference Channel

  • Tutuncuoglu, Kaya;Yener, Aylin
    • Journal of Communications and Networks
    • /
    • v.14 no.2
    • /
    • pp.151-161
    • /
    • 2012
  • This paper considers a two-user Gaussian interference channel with energy harvesting transmitters. Different than conventional battery powered wireless nodes, energy harvesting transmitters have to adapt transmission to availability of energy at a particular instant. In this setting, the optimal power allocation problem to maximize the sum throughput with a given deadline is formulated. The convergence of the proposed iterative coordinate descent method for the problem is proved and the short-term throughput maximizing offline power allocation policy is found. Examples for interference regions with known sum capacities are given with directional water-filling interpretations. Next, stochastic data arrivals are addressed. Finally, online and/or distributed near-optimal policies are proposed. Performance of the proposed algorithms are demonstrated through simulations.

Urgency-Aware Adaptive Routing Protocol for Energy-Harvesting Wireless Sensor Networks

  • Kang, Min-Seung;Park, Hyung-Kun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.25-33
    • /
    • 2021
  • Energy-harvesting wireless sensor networks(EH-WSNs) can collect energy from the environment and overcome the technical limitations of existing power. Since the transmission distance in a wireless sensor network is limited, the data are delivered to the destination node through multi-hop routing. In EH-WSNs, the routing protocol should consider the power situations of nodes, which is determined by the remaining power and energy-harvesting rate. In addition, in applications such as environmental monitoring, when there are urgent data, the routing protocol should be able to transmit it stably and quickly. This paper proposes an adaptive routing protocol that satisfies different requirements of normal and urgent data. To extend network lifetime, the proposed routing protocol reduces power imbalance for normal data and also minimizes transmission latency by controlling the transmission power for urgent data. Simulation results show that the proposed adaptive routing can improve network lifetime by mitigating the power imbalance and greatly reduce the transmission delay of urgent data.

Resonant Boost Converter for Harvesting Piezoelectric Energy (압전에너지 수확을 위한 공진형 부스트 컨버터)

  • Kim, Hyeok-Jin;Chung, Gyo-Bum
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.407-410
    • /
    • 2009
  • A piezoelectric device which converts mechanical vibration energy into electrical energy is able to harvest energy and the usable energy is mW ${\sim}$ W, hence a converter is necessary to acquire the energy efficiently. Various limited conditions should be considered for the design of AC/DC converter for energy harvesting of a piezoelectric device supplying small amount of energy. In addition to simple structure, compact size, light weight and high efficiency, the energy harvesting AC!DC converter should adopt the technique of self operating, in which only the harvested energy from the piezoelectric device is available. This paper proposes new AC/DC resonant boost converter to harvest efficiently electrical energy from mechanical vibration energy, analyzes the operating characteristics of the converter and proves its feasibility for energy harvester with PSPICE simulation and experiment.

  • PDF

Analysis of the Castalia Simulator to Implement User-friendly Simulator for Solar Energy Harvesting WSNs (사용자 친화형 태양 에너지 기반 센서 네트워크 시뮬레이터 구현을 위한 Castalia 시뮬레이터 분석)

  • Yi, Jun Min;Kang, Min Jae;Noh, Dong Kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.743-746
    • /
    • 2013
  • Most of existing simulator for wireless sensor networks (WSNs) models the battery-based sensor and provides the MAC and routing protocols designed for the battery-based WSNs. Recently, however, as the energy harvesting sensor systems are studied widely, the require of the simulator for them is getting increased; but the related work is insignificant. Unlike the existing simulators, the simulator for the energy-harvesting WSNs requires the new energy model which is integrated with the energy-harvesting model, rechargeable battery model and energy-consuming model. Additionally, it should provide the well-known MAC and routing protocols designed for the energy-harvesting WSNs, and also provide the user-friendly interface for the convenient usage. In this work, we analysis the existing Castalia simulator and revise it for the user-friendly simulator for the solar energy harvesting WSNs.

  • PDF

Feasibility study for the self powered wireless emergency call button using electromagnetic energy harvesting mechanism (전자기유도방식의 에너지 하베스팅을 이용한 자가발전 무선 비상호출기 구현 연구)

  • Kim, Il-Jung;Choi, Yeon-Suk
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.2
    • /
    • pp.111-119
    • /
    • 2014
  • This paper describes the design and implementation of a electromagnetic energy harvesting mechanism and electronic circuit for autonomous emergency call system. This analysis results show the power output of the proposed harvesting mechanism and circuit up to max power output 5V and it can hold up to 65 msec of the power generation and 10msec of the RF transmission. Based on the these testing results, the implementation of autonomous emergency call device without battery power or any external power source is feasible.