• Title/Summary/Keyword: Energy-Efficient MAC

Search Result 145, Processing Time 0.031 seconds

Impact of Duty Cycle in Wireless Sensor Networks (무선 센서 네트워크에서 Duty Cycle의 영향)

  • Sthapit, Pranesh;Pyun, Jae-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.854-857
    • /
    • 2008
  • Wireless sensor consists of an internal power source which has limited life time. Several MAC protocols have exploited scheduled sleep/listen cycles to conserve energy in sensor networks. Duty cycle is a user-adjustable parameter in low duty cycle MAC protocols, which determines the length of the sleep period in a frame. The sire of duty cycle has direct effect on the Performance of MAC Protocols. In this Paper, we simulated TEEM (A Traffic Aware, Energy Efficient MAC) and S-MAC in NS-2 with different duty cycle values and analyze how duty-cycle effects on the performance and energy consumption of both the protocols.

  • PDF

Efficient Packet Transmission Mechanism for Multi-hop Wireless Sensor Networks (멀티-홉 무선 센서 네트워크에서 효율적인 패킷 전송 메커니즘)

  • Jeon, Jun Heon;Kim, Seong Cheol
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.4
    • /
    • pp.492-498
    • /
    • 2015
  • In general, data packets from sensor nodes are transferred to the sink node in a wireless sensor networks. So many data packets are gathered around the sink node, resulting in significant packet collision and delay. In this paper, we propose an efficient packet transmission mechanism for multi-hop wireless sensor networks. The proposed mechanism is composed of two modes. One mode works between sink node and 1-hop nodes from sink. In this mode, data packets are transmitted in predefined time slots to reduce collisions. The other mode works between other nodes except sink node. In this mode, duplicated packets from neighbor nodes can be detected and dropped using some control signals. Our numerical analysis and simulation results show that our mechanism outperforms X-MAC and RI-MAC in terms of energy consumption and transmission delay.

Study on Energy Efficient Mobility-MAC Protocol for Underwater Networks (수중통신망에서 노드 이동성을 고려한 에너지 효율적인 매체접속제어 프로토콜 연구)

  • Son, Woong;Jang, Youn-Seon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.3-9
    • /
    • 2017
  • Due to difficulties of continuous electric power provision to underwater communication nodes, the efficient power usage is highly required in underwater network protocol. In this paper, we studied the energy efficient MAC(Medium Access Control) protocol for underwater network supporting mobile nodes such as UUV(Unmanned Underwater Vehicle) and AUV(Autonomous Underwater Vehicle). The mobile nodes could waste the electric power in vain when the receiver moves out of the radio propagation coverage during the data exchange and thus the transmitted data fails in reaching the receiver. Expecially, such a failure is much more obvious in underwater acoustic channels since the propagation delay is about $10^5$ times slower than in terrestrial radio channels. This proposed mobility-MAC controls the data dropping stochastically in the Dropping Zone by considering the receiver's location and moving velocity. In conclusion, this selective dropping method not only improves latency and throughput by reducing invalid droppings but also boosts power efficiency by valid droppings.

Energy Efficient MAC Protocol in Wireless Sensor Networks (무선 센서 네트워크에서의 에너지 효율적 MAC 프로토콜)

  • 서창수;고영배;김재훈
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.559-561
    • /
    • 2004
  • 최근 무선 통신 기술과 초소형화 기술의 진보로 지능형 센서(Smart Sensor)를 이용한 무선 센서 네트워크 구축이 가능해졌고, 이러한 센서 네트워크는 유비쿼터스 컴퓨팅와 Ad-Hoc 네트워크에서 많이 연구되고 있는 새로운 분야이다. 각 센서 노드는 건전지를 통해 전원을 공급받기 때문에. 제한된 에너지를 어떻게 효율적으로 사용하느냐가 센서 네트워크에서의 중요한 이슈이다. 일반적으로 센서네트워크에서 데이터 송수신에 참여하지 않는 노드는 일정 시간 Sleep함으로써 에너지를 절약한다. sleep 기술과 관계된 기존의 논문(S-MAC [1])에서는 동기화 및 NAV 설정을 위해 컨트롤 패킷(SYNC, RTS, CTS)을 사용하고, 컨트롤 패킷 전송 시간만큼은 최소한 모든 노드들이 깨어서 컨트롤 패킷의 송수신을 확인해야 한다. 본 논문에서는 컨트롤 패킷 전송 시간 동안 불필요하게 모든 노드들이 깨어있는 문제를 해결하기 위해, 새로운 센서 MAC 프로토콜(ESMAC: Efficient Sensor MAC)을 제시한다. ESMAC에서는 컨트롤 패킷 전송 시간동안 꼭 필요한 노드들만 컨트롤 패킷을 송수신하고, 나머지 노드들은 Sleep 함으로써, 모든 노드가 깨어있는 시간을 효율적으로 줄였다. 위와 같은 방법을 사용하여 ESMAC에서는 기존의 MAC(SMAC, TIPS [2]) 프로토콜들보다 컨트롤 패킷 전송 시간을 최대 62.8% 절약시켰다.

  • PDF

Energy efficient Medium Access Control for multi-hop sensor network (멀티-홉 센서 네트워크 저전력 MAC 설계)

  • Gang, Jeong-Hun;Lee, Min-Gu;Park, Byeong-Ha;Yu, Jun-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.279-282
    • /
    • 2003
  • This paper proposes a medium-access control(MAC) protocol designed for wireless multi-hop sensor networks which is used for connecting physical world and cyber computing space. Wireless multi-hop sensor networks use battery-operated computing and sensing device. We expect sensor networks to be deployed in an ad hoc fashion, with nodes remaining inactive for long time, but becoming suddenly active when specific event is detected. These characteristics of multi-hop sensor networks and applications motivate a MAC that is different from traditional wireless MACs about power conservation scheme, such as IEEE 802.11. Proposed MAC uses a few techniques to reduce energy consumption. Result show that proposed MAC obtains more energy sayings.

  • PDF

Analysis of the S-MAC/T-MAC Protocol for Wireless Sensor Networks (무선 센서망의 에너지 효율적 MAC(S-MAC/T-MAC) 성능 분석)

  • Lee Woo-Chul;Lee Yoo-Tae;Kim Dong-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.99-103
    • /
    • 2006
  • In this paper, we focus on the problem of designing an energy efficient MAC protocol for wireless sensor networks and analyze S(Sensor)-MAC and T(Time-out)-MAC. S-MAC is based on the concept of the 'listen/sleep mode cycle'. This applies message passing to reduce contention latency for sensor-network applications that require store-and-forward processing as data moves through the network. However unlike the S-MAC, where the duration of the cycle is fixed, T-MAC introduces an adaptive duty cycle in a novel way: by dynamical ending the active part of it. This reduces the amount of energy wasted on idle listening, in which nodes wait for potentially incoming messages while still maintaining a reasonable throughput. In this paper we discuss the design of these two Protocols. We analyze them from the aspect of latency, throughput, and power savings when using the OMNeT++ simulator in various environments.

  • PDF

Performance Improvement of IEEE 802.15.4 MAC For WBAN Environments in Medical (의료 WBAN 환경을 위한 IEEE 802.15.4 MAC 성능 개선)

  • Lee, Jung-Jae;Hong, Jae-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.1
    • /
    • pp.103-110
    • /
    • 2015
  • WBAN(Wireless Body Area Network) is a Wireless Sensor Network for supporting various applications around body within 2~3m which consists of medical and non-medical device. MAC in WBAN environment should satisfy requirements such as low power consumption, various transmission rate, QoS, and duty-cycle, efficiently distribute frequency band, be strong at traffic load and save energy. This paper proposes AQ(Adaptive Queuing) MAC superframe structure for efficient energy use, considering the increase of traffic load. The simulation result also show that transmission rate and average MAC delay rate is improved comparing IEEE 802.15.4 MAC with AQ MAC.

A scheme of EEMR protocol for energy efficient in wireless sensor networks (EEMR 프로토콜을 이용한 무선 센서 네트워크 노드의 에너지 소비 절감 방법)

  • Cho, Ik-Lae;Lee, Ho-Sun;Lee, Kyoon-Ha
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.4 s.36
    • /
    • pp.229-237
    • /
    • 2005
  • One of the important issues of in this research is effective usage of energy to increase life time of nodes which form a network. Existing LEEM protocol causes unnecessary active time due to small packets with shorter transfer time than active interval period of node and packets with transfer time of more than twice of active interval period of node. In this paper, we propose Energy-Efficient MAC by Reservation (EEMR) protocol which can increase energy effectiveness in wireless sensor network environment by reducing unnecessary active time using a method that reserves next-hop depend upon the size of packet. We evaluated effectiveness of our proposed method through experiments. The result showed that using EEMR protocol had better energy effectiveness than existing LEEM protocol by 15%.

  • PDF

Evaluation on the Additional CO2 by Mobile Air Conditioning Systems of Korean Light-duty Vehicles (국내 소형자동차의 에어컨 가동에 따른 CO2 배출량 평가)

  • Park, Junhong;Lee, Jongtae;Kim, Sunmoon;Kim, Jeongsoo;Kang, Gunwoo
    • Journal of Climate Change Research
    • /
    • v.3 no.4
    • /
    • pp.259-270
    • /
    • 2012
  • Mobile air conditioning(MAC) systems of light-duty vehicles consume the most energy among auxiliary parts. Vehicle $CO_2$ reduction policies in Korea, US EPA and EU include the strategies to reduce additional $CO_2$ by MAC operation with providing incentive for the high-efficient MAC technologies. It is under development how to estimate MAC $CO_2$ and to differentiate advanced or high-efficient MAC system in US EPA and EU. The additional energy by MAC operation would beaffected by not only driving patterns but also environmental conditions such as temperature and humidity. In this study, we estimated MAC $CO_2$ of Korean light-duty vehicles with various driving cycles and environmental conditions. Test results were corrected to reference conditions for varied temperature and humidity during tests to get the comparable data for test vehicles. The test results showed that high-efficient MAC technologies have potential to reduce MAC $CO_2$ approximately by 50%. Considering the rate of MAC $CO_2$ to vehicle $CO_2$, it is expected that the introduction of high-efficient MAC technologies would considerably reduce vehicle $CO_2$ emission in MAC operation.

Performance of Asynchronous MAC with an Efficient Preamble Sampling Scheme for Wireless Sensor Networks (무선 센서 네트워크를 위한 효율적인 프리엠블 샘플링 기법을 사용하는 비동기 MAC의 성능 분석)

  • Byun, Kang-Ho;Yoon, Chong-Ho;Kim, Se-Han
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.1
    • /
    • pp.70-77
    • /
    • 2008
  • On the wireless sensor network MAC protocols, one of main issues is energy enciency. Since several asynchronous wireless sensor network MAC protocols with short preamble sampling scheme can be operated without setting the timing synchronization among neighbor nodes, it consumes a little energy for maintaining protocols. However, each node encounters either preamble or data overhearing problem, because each node wakes up in a different time and must check whether the frame is being sent to itself or not. To solve this overhearing problem, we newly propose B-MAC++ that can reduce the overhearing energy consumption by using short preambles with destination address and payload length. from simulation results, we show that the proposed B-MAC++ has advantageous in terms of power consumption efficiency over other asynchronous wireless sensor network MAC protocols.