• Title/Summary/Keyword: Energy transfer efficiency

Search Result 768, Processing Time 0.03 seconds

Energy Transfer from Ethidium to Cationic Porphyrins Mediated by DNA and Synthetic Polynucleotides at Low Binding Densities

  • Jung, Jin-A;Jeon, Sun-Hee;Han, Sung-Wook;Lee, Gil-Jun;Bae, In-Ho;Kim, Seog-K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2599-2606
    • /
    • 2011
  • The fluorescence of ethidium bound to DNA, poly[d(A-T)$_2$], and poly[d(G-C)$_2$] at a [ethidium]/[DNA] ratio of 0.005 was quenched by porphyrins when both ethidium and the porphyrins simultaneously bound to the same polynucleotide. The quenching was tested using the "inner sphere" and the "Forster resonance energy transfer" (FRET) models, with the latter found to contribute, at least in part, to the quenching. Meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) exhibited a higher quenching and FRET efficiency than cis-bis(N-methylpyridinium-4-yl)porphyrin (BMPyP) for all of the tested DNA and polynucleotides, demonstrating that energy transfer efficiency is affected by the number of positive charges of porphyrins.

A Robot System Maintained with Renewable Energy

  • Kim, Jaehyun;Moon, Chanwoo
    • International journal of advanced smart convergence
    • /
    • v.8 no.1
    • /
    • pp.98-105
    • /
    • 2019
  • Energy autonomy is a system that is sustained by energy from an independent and distributed source such as renewable energy. In this paper, we propose a robotic energy autonomy in which a robot obtains energy from a renewable energy source with a limited storage capacity. As an energy transfer method, wireless power transfer is used to solve the problem of the conventional contact charging method, mechanical complexity, and to obtain high energy transfer efficiency, the image information is used to align the transmitting and receiving coils accurately. A small scale thermoelectric energy source with boost converter, battery charger, and wireless power transfer coil is constructed and an actual charging experiment is conducted to verify the proposed autonomy system.

Study on the Reduction of Energy Consumption in the Pulsed Corona Discharge Process for NOx Removal (질소산화물 제거를 위한 펄스코로나 방전공정의 에너지 소모 저감에 관한 연구)

  • 정재우;손병학;조무현;목영선;남궁원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.4
    • /
    • pp.475-483
    • /
    • 1999
  • A lab-scale test was carried out to study the reduction of electrical energy consumption in the pulsed corona discharge process for nitrogen oxides removal. The experiment was mainly focused on 1) the activation of pollution removal reactions by chemical additives and 2) the optimization of electrical circuit for the efficient energy transfer from the power supply to the corona reactor. Hydrocarbon chemical additives used in the experiment are thought to be responsible for the enhancement of the NO conversion through the chain reactions of free radicals such as, R, RCO, and RO. Electrical energy consumption per converted NO molecule has a minimum value of 17 eV when pentanol is injected. When ethylene and propylene are injected, 30 eV and 22 eV of electrical energy consumption is required for the conversion of NO molecule respectively. The ratio of the pulse forming capacitance$(C_e)$ to the reactor capacitance$(C_R)$ plays an important role in the energy transfer efficiency to the reactor. Maximum energy transfer efficiency of approximately 72% could be obtained by using the pulse forming capacitance which is 3.4 times larger than the reactor capacitance, and also the maximum NO conversion efficiency was observed with the same condition.

  • PDF

Triplet Excitation Energy Transfer in Choleic Acid Crystals

  • Kook, Seong-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2409-2413
    • /
    • 2007
  • Time resolved phosphorescence of Dibromobenzophenone (DBBP) choleic acid crystal was observed at 4.2 K as functions of excitation energy and delay time. The experimental results reveal that the energy transfer efficiency is dependent on the excitation energy, i.e. the density of acceptors sites. As the excitation energy or delay time increases, the resonance phosphorescence does not broaden and shift gradually, rather a broad luminescence band develops about 290 cm?1 to lower energy of the resonance phosphorescence. The observation implies that energy transfer from high to low energy sites in this system is controlled by emission of phonons or vibrons. The data of time resolved experiments were analyzed in terms of a mechanism involving direct donor-acceptor excitation transport by exchange coupling. It was concluded that an isotropic twodimensional exchange interaction topology is consistent with energy transfer in this system.

Design of Efficient Electroluminescent lanthanide(Ⅲ) Complexes

  • Yu, Bo Ra;Kim, Hwa Jung;Park, No Gil;Kim, Yeong Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.1005-1008
    • /
    • 2001
  • The lanthanide complexes have been anticipated to exhibit high efficiency along with a narrow emission spectrum. Photoluminescence for the lanthanide complex is characterized by a high efficiency since both singlet and triplet excitons are involve d in the luminescence process. However, the maximum external electroluminescence quantum efficiencies have exhibited values around 1% due to triplet-triplet annihilation at high current. Here, we proposed a new energy transfer mechanism to overcome triplet-triplet annihilation by the Eu complex doped into phosphorescent materials with triplet levels that were higher than singlet levels of the Eu complex. In order to show the feasibility of the proposed energy transfer mechanism and to obtain the optimal ligands and host material, we have calculated the effect depending on ligands as a factor that controls emission intensity in lanthanide complexes. The calculation shows that triplet state as well as singlet state of anion ligand affects on absorption efficiency indirectly.

Low-Voltage-Stress AC-Linked Charge Equalizing System for Series-Connected VRLA Battery Strings

  • Karnjanapiboon, Charnyut;Jirasereeamornkul, Kamon;Monyakul, Veerapol
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.186-196
    • /
    • 2013
  • This paper presents a low voltage-stress AC-linked charge equalizing system for balancing the energy in a serially connected, valve-regulated lead acid battery string using a modular converter that consists of multiple transformers coupled together. Each converter was coupled through an AC-linked bus to increase the overall energy transfer efficiency of the system and to eliminate the problem of the unbalanced charging of batteries. Previous solutions are based on centralized and modularized topologies. A centralized topology requires a redesign of the hardware and related components. It also faces a high voltage stress when the number of batteries is expanded. Modularized solutions use low-voltage-stress, double-stage, DC-linked topologies which leads to poor energy transfer efficiency. The proposed solution uses a low-voltage stress, AC-linked, modularized topology that makes adding more batteries easier. It also has a better energy transfer efficiency. To ensure that the charge equalization system operates smoothly and safely charges batteries, a small intelligent microcontroller was used in the control section. The efficiency of this charge equalization system is 85%, which is 21% better than other low-voltage-stress DC-linked charging techniques. The validity of this approach was confirmed by experimental results.

STUDY ON THE EFFECT OF THE SELF-ATTENUATION COEFFICIENT ON γ-RAY DETECTOR EFFICIENCY CALCULATED AT LOW AND HIGH ENERGY REGIONS

  • El-Khatib, Ahmed M.;Thabet, Abouzeid A.;Elzaher, Mohamed A.;Badawi, Mohamed S.;Salem, Bohaysa A.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.217-224
    • /
    • 2014
  • The present work used the efficiency transfer method used to calculate the full energy peak efficiency (FEPE) curves of the (2"*2" & 3"*3") NaI (Tl) detectors based on the effective solid angle subtended between the source and the detector. The study covered the effect of the self attenuation coefficient of the source matrix (with a radius greater than the detector's radius) on the detector efficiency. $^{152}$ An Eu aqueous radioactive source covering the energy range from 121.78 keV up to 1408.01 keV was used. In this study an empirical formula was deduced to calculate the difference between the measured and the calculated efficiencies [without self attenuation] at low and high energy regions. A proper balance between the measured and calculated efficiencies [with self attenuation] was achieved with discrepancies less than 3%, while reaching 39% for calculating values [without self attenuation] due to working with large sources, or for low photon energies.

Numerical Study of Heat Transfer Efficiency, Performace and Mechanical Behavior induced by Thermal Stress of Energy Pile (에너지 파일의 열교환 효율 및 성능, 열응력에 의한 역학적 거동 평가)

  • Min, Sun-Hong;Lee, Chul-Ho;Park, Moon-Seo;Koh, Hyung-Seon;Choi, Hang-Seok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.6 no.2
    • /
    • pp.9-14
    • /
    • 2010
  • The ground source heat pump system is increasingly being considered as an alternative to traditional heating and cooling systems to reduce the emission of ground house gases. In this paper, A series of numerical analysis for energy piles has been performed focusing on heat transfer efficiency, performance and thermal stress. Results of numerical analyses for the W-shape type shows more efficient heat exchange transfer than the coil type. From results of the thermo-mechanical analysis, it is shown that the concentration of thermal stress occurs around the circulating pipe and the interfaces between different materials. The largest deformation caused by thermal stress is observed in the energy pile.

Performance Analysis of Contactless Electrical Power Transfer for Maglev

  • Hasanzadeh, S.;Vaez-Zadeh, S.
    • Journal of Magnetics
    • /
    • v.17 no.2
    • /
    • pp.115-123
    • /
    • 2012
  • Contactless electrical power transfer through an air gap is a revived technology for supplying energy to many movable applications including Maglev. In this paper, magnetic equivalent circuits and analytical models of contactless electrical power transfer systems are developed and evaluated through experiment. Overall coupling coefficient and overall efficiency are introduced as means for evaluating the systems' performance. Compensating capacitors in primary and secondary sides of the systems improve the overall coupling coefficient and overall efficiency. Using the analytical models, the effects of different parameters and variables such as air gap and load current are analyzed to give a high coupling coefficient and an improved efficiency of power transfer for different compensation structures.

Experimental Study of Condensation Heat Transfer in Pre-heating Exchanger to the Type of Hydrophilic Surface Treatment (친수 표면처리 종류에 따른 공기 예열 열교환기의 응축 열전달 실험적 연구)

  • Seok, Sungchul;Chung, Tae-Yong;Chin, Donghoon;Hwang, Seungsik;Choi, Gyuhong;Park, Jaewon
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.237-238
    • /
    • 2012
  • Recently, an energy-saving due to the energy utilisation efficiency enhancement is important. In order to improve the heat efficiency of the general residential boiler, We performed an experiment of condensation heat transfer to air pre-heat exchanger adhered to the condensing boiler. In this research, We analyze the heat transfer performance through the hydrophilic surface treatment(plasma, etching). The results of the research, On plasma and etching treated surface, Overall heat transfer coefficient is displayed the tendency to increase.

  • PDF