• 제목/요약/키워드: Energy system design

검색결과 4,955건 처리시간 0.034초

1-D Mean Line Flow Model을 이용한 엔진 배기에너지 회수를 위한 터보컴파운드 시스템용 터빈 설계 (Turbine Design for Turbo-compound System to Recover Exhaust Gas Energy Using 1-D Mean Line Flow Model)

  • 장진영;윤정의
    • 한국자동차공학회논문집
    • /
    • 제24권1호
    • /
    • pp.74-81
    • /
    • 2016
  • The aim of this study was to find the initial design value of turbine blade for electrical type turbocompound system generating 10 kW. Turbocompound is one of the waste heat recovery system applying to internal combustion engine to recover exhaust gas energy that was about 30 % of total input energy. To design the turbine blade, 1-D mean line flow model was used. Exhaust gas temperature, pressure, flow rate and turbine rotating speed was fixed as primary boundary conditions. The velocity triangles was defined and used to determine the rotor inlet radius and width, the rotor outlet radius at shroud and radius at hub, the rotor flow angles and the number of blades.

압전 재료를 이용한 진동에너지 변환 전력발생 시스템 해석 및 설계 (System Analysis and Design for Vibration-Based Power Generation using Piezoelectric Materials)

  • 금명훈;김경호;이승엽;고병식
    • 대한기계학회논문집A
    • /
    • 제28권6호
    • /
    • pp.717-725
    • /
    • 2004
  • A power generation systems are proposed to convert ambient mechanical vibration into electrical energy using cantilever-type piezoelectric materials. The vibration-based power device can be used for self-powered systems without batteries. This paper presents the theoretical analysis for the coupled equations of piezoelectric and structural motions and investigates the dynamic characteristics of the self-power system using transfer function method. The theoretical model is verified by the finite element analysis of the resonance frequency, the dynamic response of the structure and the sensor sensibility. Experimental results measured using a prototype system agree with the theoretical predictions. The system is shown to produce 34.5 ㎼ in average. Finally, we perform the optimal design for system variables to maximize output power.

공조시스뎀 최적화를 통한 건물에너지 절감사례 연구 (A Case Study on the Building Energy Savings through HVAC System Optimization Process)

  • 허정호;권한솔;한수곤;임병찬
    • 설비공학논문집
    • /
    • 제18권5호
    • /
    • pp.426-433
    • /
    • 2006
  • The requirements for the optimal building system design is numerous. However, most system designers do not take care of various design strategies. They often argue that the proper simulation tools are not existed to solve the implicated design requirements and the time to consider many alternatives of building systems are insufficient. The aim of this study is to develop the optimization interface program that considers various system design variables and eventually find both the optimal values of annual energy use and cost. Therefore, Doe2Opt is developed to easily perform simulation-optimization process based on DOE2 and GenOpt, and minimizes energy cost of small-to-medium sized building for 6.7% and that of large sized building for 3% with optimizing several HVAC system variables.

회생에너지 저장용 플라이휠 에너지 저장 장치 설계에 관한 연구 (A Study on the Design of the Flywheel Energy Storage Device to Store the Regenerative Energy)

  • 이준호;박찬배;이병송
    • 전기학회논문지
    • /
    • 제62권7호
    • /
    • pp.1045-1052
    • /
    • 2013
  • In this study we deal with design procedures for the flywheel energy storage system that has the capacity to store the regenerative energy produced from the railway vehicles. The flywheel energy storage system (FESS) stores the regenerative electrical energy into the high speed rotational flywheel, by conversion the electrical energy into the mechanical rotational energy. Thus the FESS is composed of the energy conversion components, such as the motor and generator, mechanical support components, such as the rotational rotor, the magnetic bearings to support the rotor, and the digital controller to control the air gap between the rotor and the magnetic bearings. In this paper the design procedures for the rotor operating at the rigid mode and the magnetic bearings to support the rotational rotor without contact are presented.

고집적 태양광 집속기의 새로운 광학적 설계 및 개발 (A New Optical Design and Construction for the High Concentration of Solar Energy)

  • 황우성;조일식;주문창;;양윤섭
    • 태양에너지
    • /
    • 제18권3호
    • /
    • pp.9-14
    • /
    • 1998
  • The present solar energy concentrator is a 2-dimensional system that incorporates with a tubular absorber. A new design theory is developed on the basis of the generalized edge-ray principle. The result shows the increase of concentration ratio for the same acceptance angle as the basic CPC by a factor of $C_{new}=C_{cpc}\{1+(d/{\pi}r)\;sin^2{\theta}_c\}$. For example, if ${\theta}_c=30^{\circ}$, the new design offers the concentration of $2.0{\sim}2.72$, whereas $C_{cpc}=2$. The new system also provide a thin and light-weight design.

  • PDF

SMART 시스템의 공정설계 및 조업조건 선정 (Process Design and Selection of Operating Conditions for SMART System)

  • 류호정
    • 한국수소및신에너지학회논문집
    • /
    • 제18권1호
    • /
    • pp.1-11
    • /
    • 2007
  • To check feasibility of SMART(Steam Methane Advanced Reforming Technology) system, conceptual design and sensitivity analysis of operating variables have been performed based on the design program of two-interconnected fluidized beds. Among three configurations of two-interconnected fluidized beds systems, the bubbling-bubbling system was selected as the best configuration. Process design results indicate that the SMART system is compact and feasible. Based on the selected operating conditions, the effects of variables such as process capacity, pressure, and weight percent of $CO_2$ absorbable component have been investigated as well.

부유식 태양광 에너지 발전시설의 수정설계 (Modified Design of Floating Type Photovoltaic Energy Generation System)

  • 이영근;주형중;남정훈;윤순종
    • 복합신소재구조학회 논문집
    • /
    • 제1권4호
    • /
    • pp.18-27
    • /
    • 2010
  • We had designed and constructed floating type photovoltaic energy generation system. In this paper, we present the result of investigations pertaining to the development of links between unit modules of the floating type photovoltaic energy generation system. The link system installed between the unit modules is made of pultruded FRP, tire, and polyethilene synthetic fiber rope. The link system is analized by the finite element method. The floating type photovoltaic energy generation system consisted of unit modules connected by link system is installed successfully at sea site. In addition, we present the modified design of the floating type photovoltaic energy generation system based on the proto type system.

  • PDF

Graphical Design Plane Analysis for Series-Compensated Resonant Energy Links of Inductive Wireless Power Transfer Systems

  • Jeong, Chae-Ho;Choi, Sung-Jin
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1440-1448
    • /
    • 2019
  • In wireless power transfer systems, it is important to design resonant energy links in order to increase the power transfer efficiency and to obtain desired system performances. This paper proposes a method for designing and analyzing the resonant energy links in a series-series configured IPT (inductive power transfer) system using the FOM-rd plane. The proposed FOM-rd graphical design plane can analyze and design the voltage gain and the power efficiency of the energy links while considering changes in the misalignment between the coils and the termination load condition. In addition, the region of the bifurcation phenomena, where voltage gain peaks are split over the frequency, can also be distinctly identified on the graphical plane. An example of the design and analysis of a 100 W inductive power transfer system with the proposed method is illustrated. The proposed method is verified by measuring the voltage gain and power efficiency of implemented hardware.

에너지 저감형 그린홈 프로토타이핑을 위한 설계요소 분석 연구 (Analytic Study on the Design Elements for Energy Conservative Green-Home Prototyping)

  • 김정은;장성주;하미경;성혜연;김경완
    • KIEAE Journal
    • /
    • 제11권4호
    • /
    • pp.63-70
    • /
    • 2011
  • In respond to the global energy crisis and climate change, there have been many ongoing national efforts to develop a sustainable housing prototype followed by "2 million Green Home Project" in Korea. More than 50% of nation's population are currently living in apartment housing thus the country is seriously in need of developing green apartment prototype. In this research, we focused on energy-conservative green apartment design prototype that have both passive components and active systems explored in a systemic design approach. After selecting an existing basic apartment unit, we analyzed and compared statistical data with the simulated annual energy consumption to match these two data sets for validating simulation accuracy performed with TRNSYS package. We performed energy simulations with different passive design factors such as varied insulation thickness, window types and infiltration rates as well as the active design factors including boilers and lighting fixtures to analyze their impacts on the energy performance of the housing unit using TRNSYS software. As a result, we acquired significant energy reduction effect with explored design strategies but the life cycle cost analysis for the final design guidline would need to be performed. In this study, we focused on a systematic comparative energy analysis based on TRNSYS that can improve the design of a green apartment housing.

KT-2 Poloidal-Field (PF) System Design

  • J.M. Han;Lee, K.W.;B.G. Hong;C.K. Hwang;B.J. Yoon;J.S. Yoon;Y.D. Bae;W.S. Song;Kim, S.K.
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(4)
    • /
    • pp.425-431
    • /
    • 1996
  • KT-2 poloidal-field (PF) system is designed to cope the up-down symmetric double-null (DN) and asymmetric single-null (SN) discharges with typical plasma parameters, in which three sets of "design-basis" scenarios - the ohmic heating (OH), the 5MW and the high bootstrap (HIBS) baseline modes - are applied. The power and energy demand for each cases are also deduced. The peak power and the maximum energy requirements for the KT-2 magnet system, incorporating the PF and the toroidal-field (TF) coils, are proven to be 123MW and 1601MJ, respectively when it is driven in DN configuration. The KT-2 PF system is capable of achieving the machine mission of creating a 500kA heated plasma with a current flattop of $\geq$20 seconds.

  • PDF