• Title/Summary/Keyword: Energy supply and demand

Search Result 529, Processing Time 0.031 seconds

A Model of Four Seasons Mixed Heat Demand Prediction Neural Network for Improving Forecast Rate (예측율 제고를 위한 사계절 혼합형 열수요 예측 신경망 모델)

  • Choi, Seungho;Lee, Jaebok;Kim, Wonho;Hong, Junhee
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.82-93
    • /
    • 2019
  • In this study, a new model is proposed to improve the problem of the decline of predict rate of heat demand on a particular date, such as a public holiday for the conventional heat demand forecasting system. The proposed model was the Four Season Mixed Heat Demand Prediction Neural Network Model, which showed an increase in the forecast rate of heat demand, especially for each type of forecast date (weekday/weekend/holiday). The proposed model was selected through the following process. A model with an even error for each type of forecast date in a particular season is selected to form the entire forecast model. To avoid shortening learning time and excessive learning, after each of the four different models that were structurally simplified were learning and a model that showed optimal prediction error was selected through various combinations. The output of the model is the hourly 24-hour heat demand at the forecast date and the total is the daily total heat demand. These forecasts enable efficient heat supply planning and allow the selection and utilization of output values according to their purpose. For daily heat demand forecasts for the proposed model, the overall MAPE improved from 5.3~6.1% for individual models to 5.2% and the forecast for holiday heat demand greatly improved from 4.9~7.9% to 2.9%. The data in this study utilized 34 months of heat demand data from a specific apartment complex provided by the Korea District Heating Corp. (January 2015 to October 2017).

The Strategy of Renewable Energy of Sri Lanka for Energy-based Economic Development: Case of Wind Power

  • Han, Jong Taek;Kim, Jun Yeup
    • International Area Studies Review
    • /
    • v.21 no.1
    • /
    • pp.281-301
    • /
    • 2017
  • This article examines the way of the functionality of policy instruments for the development of renewable energy through the case of the wind power. The general barrier of the renewable energy development is considered to be the economic barrier. However the principal issue is the political barrier without the broad cooperation between the host government and the firm. Maintaining the long-term competitive advantage requires the shift of not only the strategy following the external circumstance but also the internal capacity development to utilize resources. Thus the comparative case study of Sri Lanka and Germany proposes the analysis of the supply-push and demand-pull policy with five patterns on the development of wind power in order to suggest how the functionality of policy instruments must be served to foster the wind power.

A Study of Energy Management Guide Using Building Energy Map By BIM -Focusing on Suseonggu Daegu city- (BIM을 이용한 건축물별 에너지 지도 작성 및 에너지 관리방안에 관한 연구 -대구시 수성구를 중심으로-)

  • Kim, Hye-Mi;Hong, Won-Hwa
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.06a
    • /
    • pp.81-82
    • /
    • 2010
  • Emerging global economic growth and increasing demand for energy supply and demand imbalance and the excessive use of fossil fuels existing the rapidly increasing greenhouse gas emissions and resource depletion of global energy crisis is deepening. Accordingly, improvement of living conditions around and through the natural ecological preservation and the need for a comfortable life for the meeting the importance of energy management and consumption are emerging. Many in the field of architecture for energy-saving measures, and conducting research and verify green building energy ratings and low energy for the initial steps that can be verified from the Energy Performance of BIM(Building Information Model) technology development and commercialization of the building energy to predict the performance objectively, leverages technology in an existing building energy performance analysis and possibilities of BIM-based green building process presented. In this study, using BIM for existing building energy performance analysis of data collected through the objective and efficient management of the energy it consumes Mapping and Management Plan is to research on.

  • PDF

Generator's Maintenance Scheduling to Improve Supply Reliability (공급신뢰도 개선을 위한 발전기 보수계획)

  • 차준민
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.89-95
    • /
    • 1998
  • Maintenance scheduling of generators plays an important role in evaluating supply reliability of power systems. Since generators must be maintained and inspected, the generation planner must schedule planned outages during the year. Several factors entering into this scheduling analysis include: seasonal load-demand profile, amount of maintenance, size of the units, elapsed time from last maintenance, and availability of maintenance crew. This paper proposes a new maintenance scheduling algorithm for the alternatives of long-term generation expansion planning by using LOLP levelization method which is known as an effective method for the generator's maintenance scheduling. To get the best supply reliability of power systems, we change the maintenance period to levelize the reliability over all period. The proposed algorithm is applied to a real size power system and the better reliability results are obtained.

  • PDF

Development of HVAC System to Lower the Conveyance Energy and Building Height (반송동력과 건물층고 저감형 공조시스템 개발)

  • 김정엽;신현준
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.2
    • /
    • pp.116-125
    • /
    • 2003
  • The new HVAC system to lower the conveyance energy and building height using IAV (Increasing Air Volume) technique is developed. IAV units which are equipped in each zone carry out air-conditioning and supply fresh air by induction of outdoor air in main duct. The design program which decides size of OAHU and IAV unit according to air conditioning load and fresh air demand of each zone is presented. The control system is developed to operate efficiently HVAC system and IAV unit, so that individual zone operation and well-deal with partial load and IAQ problem are possible. The new system is investigated in model building and makes more profit in conveyance energy, size of air conditioning facilities room and building height than VAV system. But in construction cost it is worse by about 15 per-centage.

Development of HVAC System to Lower the Conveyance Energy and Building Height

  • Kim, Jung-Yup;Shin, Hyun-Joon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.1
    • /
    • pp.31-43
    • /
    • 2005
  • The new HVAC system is developed to lower the conveyance energy and building height using IAV(Increasing Air Volume) technique. IAV units which are equipped in each zone carry out air-conditioning and supply fresh air by induction of outdoor air in main duct. The design program which decides size of OAHU and IAV unit according to air conditioning load and fresh air demand of each zone is presented. The control system is developed to operate efficiently HVAC system and IAV unit, so that individual zone operation and well-deal with partial load and IAQ problem are possible. The new system is investigated in model building and makes more profit in conveyance energy. size of air conditioning facilities room and building height than VAV system. But in construction cost it is worse by about 15 percentage.

A bimodal Weibull distribution - capacity factor for different heights at sulur

  • Seshaiah, C.V.;Indhumathy, D.
    • Wind and Structures
    • /
    • v.28 no.1
    • /
    • pp.63-70
    • /
    • 2019
  • Due to developing environmental concern use of renewable energy source is very essential. The great demand for the energy supply coupled with inadequate energy sources creates an emergency to find a new solution for the energy shortage. The appropriate wind energy distribution is the fundamental requirement for the assessment of wind energy potential available at the particular site essential for the design of wind farms. Hence the proper specification of the wind speed distribution plays a vital role. In this paper the Bimodal Weibull distribution is used to estimate the Capacity factor at the proposed site. The shape and scale parameters estimated using Maximum likelihood method is used as the initial value for extrapolation. Application of this model will give an accurate result overwhelming the concept of overestimation or underestimation of Capacity factor.

Configuration and Economic Analysis of Cogeneration Systems using COGENMASTER model (COGENMASTER 모형을 이용한 열병합발전 시스템 구성 및 경제성 분석)

  • Park, J.J.;Jo, I.S.;Kim, C.S.;Kwun, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.27-29
    • /
    • 1994
  • Recently, the energy situation in Korea has been significantly changed. Rapid increase in electricity demand, tremendous financial need for new power plant construction, and environmental problem have led to search for more efficient energy production and energy conservation technologies. Due to the potential energy and cost savings to both electric utilities and industries, cogeneration will play an important role in the electric power and thermal energy supply in the future. In this study, we present the COGENMASTER computer model for optimal system configuration and economic analysis of cogeneration system. We also present several case studies with this module to analyze Korean cogeneration market. The result of this study will be useful to utility and industrial cogeneration planners for rapid analysis of cogeneration's value under a broad range of scenarios.

  • PDF

Domestic Greenhouse Gas Reduction Policy (국내 온실가스 감축 정책)

  • Bae, Sung-Ho
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.8-12
    • /
    • 2011
  • For reducing greenhouse gas emissions, the short-term strategy is of existing energy-efficient appliances to facilitate the spread of energy efficiency improvements to improve energy efficiency, energy saving projects that will include investments to enable. R&D is at the core of the long-term strategy. To reduce energy demand, the equipments and processes improved energy efficiency should be developed. In terms of energy supply, the policies for greenhouse gas reduction is to replace fossil fuels by expanding the supply of renewable energy such as solar, wind, geothermal, biomass and nuclear power as nearly zero-emission of greenhouse gas. In terms of energy consumption, measures to reduce greenhouse gas emissions is in line with the policy for efficiency improvement. The buildings & work-site of high-energy consumption in the building & Industry sectors, should implement a policy to strengthening the voluntary agreement on energy-saving facilities and expand to invest in energy saving facilities.

Modeling and Operation of Hybrid Energy System with Supercapacitor Bank and PV System (PV와 슈퍼캐패시터 하이브리드에너지시스템 모델 및 제어.운영기술)

  • Cho, Jea-Hoon;Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.291-295
    • /
    • 2009
  • Economic and environmental concerns over fossil fuels encourage the development of photovoltaic(PV) energy systems. Due to the intermittent nature of solar energy. energy storage is needed in a stand-alone PV system for the purpose of ensuring continuous power flow. Grid-connected PV system that supply power in a critical load demand require to curb power fluctuation. In this case. SCB is a effectiveness in controlling power variation due to intrinsic PV system. We propose the Matlab/Simulink dynamic model and power flow characteristics of a hybrid energy system with PV and SCB.

  • PDF