• Title/Summary/Keyword: Energy storage module

Search Result 102, Processing Time 0.025 seconds

Design and Operation Characteristics of 2.4MJ Pulse Power System for Electrothermal-Chemical(ETC) Propulsion(I) (전열화학추진용 2.4MJ 펄스파워전원의 설계와 동작특성(I))

  • Jin, Y.S.;Lee, H.S.;Kim, J.S.;Cho, J.H.;Lim, G.H.;Kim, J.S.;Chu, J.H.;Jung, J.W.;Hwang, D.W.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1868-1870
    • /
    • 2000
  • As a drive for an ETC (Electro-thermal Chemical) launcher, a large pulse power system of a 2.4MJ energy storage was designed, constructed and tested. The overall power system consists of eight capacitive 300kJ energy storage banks. In this paper we describe the design features, setup and operation test result of the 300kJ pulsed power module. Each capacitor bank of the 300kJ module consists of six 22kV 50kJ capacitors. A triggered vacuum switch (TVS-43) was adopted as the main pulse switch. Crowbar diode circuits, variable multi-tap inductors and energy dumping systems are connected to each high power capacitor bank via bus-bars and coaxial cables. A parallel crowbar diode stack is fabricated in coaxial structure with two series 13.5kV, 60kA avalanche diodes. The main design parameters of the 300kJ module are a maximum current of 180kA and a pulse width of 0.5 - 3ms. The electrical performances of each component and current output variations into resistive loads have been investigated.

  • PDF

Power Flow Control of PV Hybrid Module System with ESS (에너지 저장 장치가 적용된 태양광 하이브리드 모듈형 시스템의 전력 조류 제어)

  • Lee, Soon-Ryung;Kim, Young-Ho;Jang, Jin-Woo;Choi, Bong-Yeon;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.473-474
    • /
    • 2013
  • In this paper, a power flow control of PV hybrid module system with ESS is proposed. Photovoltaic(PV) hybrid module system is consist of individual converter, central inverter, and energy storage system(ESS). Because PV power can be changed in particular hours and environment condition, the power management control for ESS is required. In this paper, the power flow control method for PV hybrid module system with ESS is proposed. The validity of proposed control method is verified by simulations and theoretical analysis.

  • PDF

Operation Technology of PV-ESS Integrated Module for DC Micro Grid with Constant Power Tracking Algorithm (일정 전력 추종 알고리즘이 적용된 DC 마이크로 그리드용 PV-ESS 통합형 모듈의 운영 기술)

  • Ryu, Kyung;Kim, Jun-Mo;Lee, Jeong;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.433-441
    • /
    • 2020
  • This study proposes a constant power tracking algorithm to compensate for the intermittent characteristics of Photovoltaic connected to a DC micro grid. A PV-ESS integrated module in which distributed ESS is additionally connected is utilized for the proposed algorithm. PV performs P&O MPPT control at all times. To supplement the intermittent characteristics of PV, the proposed constant power tracking algorithm maintains constant power by operating the distributed ESS of the PV-ESS integrated module in accordance with the output state of the PV. By performing PSIM simulation and an experiment, this study verifies the performance of the integrated module of PV-ESS for DC micro grids applying the constant power tracking algorithm.

The Evaluation of Reliability for the High pressure hydrogen Storage System of Fuel Cell Vehicle(II) (연료전지자동차의 고압수소저장시스템 신뢰성 평가(II))

  • Choi, Young-Min;Kim, Sang-Hyun;Kim, Hyung-Ki;Jang, Gyu-Jin;Ahn, Byung-Ki;Lim, Tae-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.37-40
    • /
    • 2008
  • We have concentrated on the performance improvement of each part for durability, safety and cost of high pressure storage system for fuel cell vehicle so far. But for the mass production of fuel cell vehicle, it is necessary to evaluate durability and safety in system module. We built the standard to evaluate and collision safety of high pressure storage system for fuel cell vehicle, and could verify reliability of high pressure storage system.

  • PDF

The Evaluation of Reliability for the High pressure hydrogen Storage System of Fuel Cell Vehicle (연료전지자동차의 고압수소저장시스템 신뢰성 평가)

  • Jang, Gyu-Jin;Choi, Young-Min;Ahn, Byung-Ki;Lim, Tae-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.71-74
    • /
    • 2007
  • We have concentrated on the performance improvement of each part for durability, safety and cost of high pressure storage system for fuel cell vehicle so far. But for the mass production of fuel cell vehicle, it is necessary to evaluate durability and safety in system module. We built the standard to evaluate vibration and collision safety of high pressure storage system for fuel cell vehicle, and could verify reliability of high pressure storage system.

  • PDF

An Efficient WLAN Device Power Control Technique for Streaming Multimedia Contents over Mobile IP Storage (모바일 IP 스토리지 상에서 멀티미디어 컨텐츠 실행을 위한 효율적인 무선랜 장치 전력제어 기법)

  • Nam, Young-Jin;Choi, Min-Seok
    • The KIPS Transactions:PartA
    • /
    • v.16A no.5
    • /
    • pp.357-368
    • /
    • 2009
  • Mobile IP storage has been proposed to overcome storage limitation in the flash memory and hard disks. It provides almost capacity-free space for mobile devices over wireless IP networks. However, battery lifetime of the mobile devices is reduced rapidly because of power consumption with continuous use of a WLAN device when multimedia contents are being streamed through the mobile IP storage. This paper proposes an energy-efficient WLAN device power control technique for streaming multimedia contents with the mobile IP storage. The proposed technique consists of a prefetch buffer input/output module, a WLAN device power control module, and a reconfigurable prefetch buffer module. Besides, it adaptively determines the size of the prefetch buffer according to a quality of the multimedia contents, and it dynamically controls the power mode of the WLAN device on the basis of power on-off operations while streaming the multimedia contents. We evaluate the performance of the proposed technique on a PXA270-based mobile device that employs the embedded linux 2.6.11, Intel iSCSI reference codes, and a WLAN device. Extensive experiments reveal that the proposed technique can save the energy consumption of the WLAN device up to 8.5 times with QVGA multimedia contents, as compared with no power control.

DTS-based Temperature Monitoring and Analysis of Battery Cell Deterioration Characteristics by Temperature Condition (DTS 기반 온도 감시 및 온도 조건에서의 배터리 셀 열화 특성 분석)

  • SoonJong, Kwon;Soo-Yeon, Kim;Jin, Hwang;Sang-Kyun, Woo;Bong-Suck, Kim
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.143-149
    • /
    • 2022
  • As ESS safety issues increase recently, there is a need to more precisely monitor the temperature of the ESS. In this paper, DTS technology for temperature monitoring of ESS batteries is introduced and the temperature measurement principle is explained. The temperature of the battery module is measured using the DTS system, and the thermal deviation between battery cells inside the battery module is analyzed. In order to analyze how thermal imbalance affects the charging and discharging performance of the battery, an accelerated degradation test was conducted. Cycle life characteristics analysis, battery surface temperature change, and AC impedance characteristics were conducted to analyze how the performance of battery cells differs according to temperature conditions.

Electric Propulsion Naval Ships with Energy Storage Modules through AFE Converters

  • Kim, So-Yeon;Choe, Sehwa;Ko, Sanggi;Kim, Sungmin;Sul, Seung-Ki
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.402-412
    • /
    • 2014
  • This paper proposes a novel electric propulsion system for naval ships, which consists of Active Front End (AFE) converters directly connected to battery Energy Storage Modules (ESMs). Employing the proposed AFE converters with ESMs in the power systems of naval ships can enhance the reliability and quality of the electric power. Furthermore, the fuel-efficiency of the generator can be improved by a higher loading factor of the generator and its prime movers. The proposed AFE configuration does not require an additional dedicated DC/AC converter for the ESMs. Instead of that, the AFE converter itself can control the DC link voltage and the discharging and/or charging of the ESMs. A control scheme to achieve these control objectives is also presented in this paper. The overall power system, including the generators and electrical loads of a naval ship, is implemented by a small scaled Power Hardware-In-the-Loop (PHIL) simulator. Through this experimental setup, the proposed system configuration and the power control strategies are verified. It is shown that the fuel-efficiency and transient dynamics can be improved in the normal and contingency operation modes.

A Study on the Design and Control Characteristics for Optimum Operation of the PV System-based ESS (PV System 기반 ESS의 최적운전을 위한 설계 및 제어 특성에 관한 연구)

  • Cha, Insu;Park, Jongbok;Jung, Gyeonghwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.5
    • /
    • pp.19-30
    • /
    • 2016
  • In this study, realize voltage regulation $220Vac{\pm}10%$ or less, frequency fluctuation $60Hz{\pm}1%$ or less over the independent operation and grid-connected operation technologies for power stabilization relates to the ESS designed and manufactured in conjunction with solar installations and solar to compensate the output reduction due to the polarization of the solar module through the polarization prevention technology for preventing the optical module efficiency is lowered, in conjunction with the BMS inverter efficiency was more than 92%, more than 90% of the charging efficiency to the target. This study was designed in conjunction with the ESS solar power plants, grid-connected operation and independent operation, Peak-Cut, it can stabilize the grid via the Peak-Shifting operation

Analysis and Design of Profiling Adaptor for XML based Energy Storage System (XML 기반의 에너지 저장용 프로파일 어댑터 분석 및 설계)

  • Woo, Yongje;Park, Jaehong;Kang, Mingoo;Kwon, Kiwon
    • Journal of Internet Computing and Services
    • /
    • v.16 no.5
    • /
    • pp.29-38
    • /
    • 2015
  • The Energy Storage System stores electricity for later use. This system can store electricity from legacy electric power systems or renewable energy systems into a battery device when demand is low. When there is high electricity demand, it uses the electricity previously stored and enables efficient energy usage and stable operation of the electric power system. It increases the energy usage efficiency, stabilizes the power supply system, and increases the utilization of renewable energy. The recent increase in the global interest for efficient energy consumption has increased the need for an energy storage system that can satisfy both the consumers' demand for stable power supply and the suppliers' demand for power demand normalization. In general, an energy storage system consists of a Power Conditioning System, a Battery Management System, a battery cell and peripheral devices. The specifications of the subsystems that form the energy storage system are manufacturer dependent. Since the core component interfaces are not standardized, there are difficulties in forming and operating the energy storage system. In this paper, the design of the profile structure for energy storage system and realization of private profiling system for energy storage system is presented. The profiling system accommodates diverse component settings that are manufacturer dependent and information needed for effective operation. The settings and operation information of various PCSs, BMSs, battery cells, and other peripheral device are analyzed to define profile specification and structure. A profile adapter software that can be applied to energy storage system is designed and implemented. The profiles for energy storage system generated by the profile authoring tool consist of a settings profile and operation profile. Setting profile consists of configuration information for energy device what composes energy saving system. To be more specific, setting profile has three parts of category as information for electric control module, sub system, and interface for communication between electric devices. Operation profile includes information in relation to the method in which controls Energy Storage system. The profiles are based on standard XML specification to accommodate future extensions. The profile system has been verified by applying it to an energy storage system and testing charge and discharge operations.