• 제목/요약/키워드: Energy storage density

검색결과 400건 처리시간 0.023초

전고체 리튬 이차전지용 합금계 음극 소재의 연구 동향 (Recent Progress of Alloy-Based All-Solid-State Li-Ion Battery Anodes)

  • 윤정명;박철민
    • Corrosion Science and Technology
    • /
    • 제22권6호
    • /
    • pp.466-477
    • /
    • 2023
  • The increasing demand for high-performance energy storage systems has highlighted the limitations of conventional Li-ion batteries (LIBs), particularly regarding safety and energy density. All-solid-state batteries (ASSBs) have emerged as a promising next-generation energy storage system, offering the potential to address these issues. By employing nonflammable solid electrolytes and utilizing high-capacity electrode materials, ASSBs have demonstrated improved safety and energy density. Automotive and energy storage industries, in particular, have recognized the significance of advancing ASSB technology. Although the use of Li metal as ASSB anode is promising due to its high theoretical capacity and the expectation that Li dendrites will not form in solid electrolytes, persistent problems with Li dendrite formation during cycling remain. Therefore, the exploration of novel high-performance anode materials for ASSBs is highly important. Recent research has focused extensively on alloy-based anodes for ASSBs, owing to their advantages of no dendrite formation and high-energy density. This study provides a comprehensive review of the latest advancements and challenges associated with alloy-based anodes for ASSBs.

Revolutionizing Energy Storage: Exploring Processing Approaches and Electrochemical Performance of Metal-Organic Frameworks (MOFs) and Their Hybrids

  • Wajahat Khalid;Muhammad Ramzan Abdul Karim;Mohsin Ali Marwat
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.14-31
    • /
    • 2024
  • The text highlights the growing need for eco-friendly energy storage and the potential of metal-organic frameworks (MOFs) to address this demand. Despite their promise, challenges in MOF-based energy storage include stability, reproducible synthesis, cost-effectiveness, and scalability. Recent progress in supercapacitor materials, particularly over the last decade, has aimed to overcome these challenges. The review focuses on the morphological characteristics and synthesis methods of MOFs used in supercapacitors to achieve improved electrochemical performance. Various types of MOFs, including monometallic, binary, and tri-metallic compositions, as well as derivatives like hybrid nanostructures, sulfides, phosphides, and carbon composites, are explored for their energy storage potential. The review emphasizes the quest for superior electrochemical performance and stability with MOF-based materials. By analyzing recent research, the review underscores the potential of MOF-based supercapacitors to meet the increasing demands for high power and energy density solutions in the field of energy storage.

정압식 압축공기저장(CAES) 발전 시스템 에너지 분석 (Energy Analysis of Constant-Pressure Compressed Air Energy Storage (CAES) Generation System)

  • 김영민;이선엽;이장희
    • 에너지공학
    • /
    • 제20권3호
    • /
    • pp.178-184
    • /
    • 2011
  • 압축공기저장(CAES) 발전은 가스터빈에 필요한 압축공기를 야간이나 비첨두 시간에 저렴한 전기로 미리 압축해서 저장하였다가 주간에 활용하는 것으로 전력 저장과 발전의 하이브리드 기술이라고 할 수 있다. 그러나 기존 압축공기저장 발전의 경우 심야에 압축공기를 일정부피의 압축공기 저장조에 충전하게 되면 저장조내의 압력은 점점 증가하게 되고, 반대로 주간에 발전을 위해 압축공기를 방출하게 되면 저장조내의 압력은 감소하게 된다. 이와 같이 운전 압력비 조건이 넓은 범위로 변화하여 설계 압력비에서 벗어나게 되는 것은 압축 및 팽창효율이 크게 감소하게 되는 원인이 된다. 본 논문에서는 이러한 기존의 변압식 압축공기저장 발전 방식의 문제점을 해결하기 위해 새로운 방식의 정압식 압축공기저장 발전 방식을 제시하고 있으며, 엑서지 개념을 포함한 에너지 분석을 통해 에너지 밀도 증가와 효율 향상 효과를 예측하였다. 새로운 방식의 정압식 압축공기 저장 발전 방식은 정압식 압축공기 저장 발전과 공압식 양수발전의 하이브리드 개념으로 기존 변압식 압축공기저장 발전 방식에 비해 정압 운전에 의한 효율향상과 에너지 밀도 증가로 압축공기 저장조의 크기를 50%이상 줄일 수 있는 장점을 가지고 있다.

$\mu$SMES 코일용 초전도도체의 전류용량에 관한 연구 (Study on Current Capacity of the SC Conductor for $\mu$SMES Coil)

  • 김해종;성기철;조전욱;진홍범;류강식;류경우
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제1권1호
    • /
    • pp.22-27
    • /
    • 1999
  • Recently, small-sized superconducting magnetic storage($\mu$SMES) coils become commercially as an energy storage device for a power conditioner. In design and fabrication of the $\mu$SMES coils, to determine optimum current capacity of the superconducting(SC) conductors is one of the important things. We thus investigated the effect of conductor's current capacity, current density, and stability on the coil's maximum stored energy density in consideration of AC losses and switching device's capacities in a power converter. The results show that the smaller current capacity of the SC conductors is preferred for the $\mu$SMES coils but can increase their induced voltage excessively.

  • PDF

Conversion-Alloying Anode Materials for Na-ion Batteries: Recent Progress, Challenges, and Perspective for the Future

  • Kim, Joo-Hyung;Kim, Do Kyung
    • 한국세라믹학회지
    • /
    • 제55권4호
    • /
    • pp.307-324
    • /
    • 2018
  • Rechargeable lithium-ion batteries (LIBs) have been rapidly expanding from IT based applications to uses in electric vehicles (EVs), smart grids, and energy storage systems (ESSs), all of which require low cost, high energy density and high power density. The increasing demand for LIBs has resulted in increasing price of the lithium source, which is a major obstacle to wider application. To date, the possible depletion of lithium resources has become relevant, giving rise to the interest in Na-ion batteries (NIBs) as promising alternatives to LIBs. A lot of transition metal compounds based on conversion-alloying reaction have been extensively investigated to meet the requirement for the anodes with high energy density and long life-time. In-depth understanding the electrochemical reaction mechanisms for the transition metal compounds makes it promising negative anode for NIBs and provides feasible strategy for low cost and large-scale energy storage system in the near future.

Theoretical Investigation of Edge-modified Zigzag Graphene Nanoribbons by Scandium Metal with Pyridine-like Defects: A Potential Hydrogen Storage Material

  • Mananghaya, Michael
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.253-256
    • /
    • 2014
  • Functionalization of zigzag graphene nanoribbon (ZGNR) segment containing 120 C atoms with pyridine (3NV-ZGNR) defects was investigated on the basis of density-functional theory (DFT) calculations, results show that edge-modified ZGNRs by Sc can adsorb multiple hydrogen molecules in a quasi-molecular fashion, thereby can be a potential candidate for hydrogen storage. The stability of Sc functionalization is dictated by a strong binding energy, suggesting a reduction of clustering of metal atoms over the metal-decorated ZGNR.

Electronic structure and magnetism of catalytic material Pt3Ni surfaces: Density-functional study

  • Sharma, Bharat Kumar;Kwon, Oryong;Odkhuu, Dorj;Hong, Soon Cheol
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2012년도 자성 및 자성재료 국제학술대회
    • /
    • pp.172-172
    • /
    • 2012
  • A Pt-skin $Pt_3Ni$(111) surface was reported to show high catalytic activity. In this study, we investigated the magnetic properties and electronic structures of the various oriented surfaces of bulk-terminated and Pt-segregated $Pt_3Ni$ by using a first-principles calculation method. The magnetic moments of Pt and Ni are appreciably enhanced at the bulk-terminated surfaces compared to the corresponding bulk values, whereas the magnetic moment of Pt on the Pt-segregated $Pt_3Ni$(111) surface is just slightly enhanced because of the reduced number of Ni neighboring atoms. Spin-decomposed density of states shows that the dz2 orbital plays a dominant role in determining the magnetic moments of Pt atoms in the different orientations. The lowering of the d-band center energy (-2.22 eV to -2.46 eV to -2.51 eV to -2.65 eV) in the sequence of bulk-terminated (100), (110), (111), and Pt-segregated (111) may explain the observed dependence of catalytic activity on surface orientation. Our d-band center calculation suggests that an observed enhanced catalytic activity of a $Pt_3Ni$(111) surface originates from the Pt-segregation.

  • PDF

수소저장합금을 이용한 수소저장탱크의 구조에 따른 수소저장 특성 연구 (Study on the Characteristics of Hydrogen Storage according to the Structure of Storage Tank using Metal Hydride)

  • 심규성;명광식;김정덕;김종원
    • 한국수소및신에너지학회논문집
    • /
    • 제13권1호
    • /
    • pp.90-99
    • /
    • 2002
  • In order to utilize hydrogen energy in a large-scale in the future, development of effective hydrogen storage method is essentially required as well as that of efficient hydrogen production method. The hydrogen storage method using metal hydrides has been holding the spotlight as a safer and higher-density hydrogen storage method than conventional hydrogen storage methods such as liquid hydrogen or compressed hydrogen storage method. However when metals react with hydrogen to store hydrogen as metal hydrides, they undergo exothermic reactions, while metal hydrides evolve hydrogen by endothermic reaction. Therefore, hydrogen storage tank should have such structure that it can absorb or release reaction heat rapidly and efficiently. In this study, a review on the improvement of the heat release and absorption structure in the hydrogen storage tank was conducted, and as a result, a new type of hydrogen storage tank with the structure of vertical-type wall was designed and manufactured. Experimental results showed that this new type of tank could be used as an efficient hydrogen storage tank because its structure is simpler and manufacture is easier than cup-type hydrogen storage tank with the structure of packed horizontal cup.

염화칼슘이 함침된 펄라이트를 이용한 화학축열에 대한 실험적 연구 (Experimental Study on Calcium Chloride Impregnated Perlite for Thermochemical Heat Storage)

  • 정한솔;김학성;황경엽;김광호
    • 설비공학논문집
    • /
    • 제27권3호
    • /
    • pp.123-127
    • /
    • 2015
  • Thermochemical heat storage is a cutting-edge technology which can balance the energy usage between supplies and demands. Recent studies have suggested that thermochemical heat storage has significant advantages, compared to other storage methods such as latent heat storage or sensible heat storage. Nevertheless, ongoing research and development studies showed that the thermochemical heat storage has some serious problems. To bring the thermochemical heat storage method into market, we introduce experimental setup with composite material using perlite that supports calcium chloride sorbent. Also, to compare thermal properties with composite material, we used pure thermochemical material. Then, we found that the composite material has higher heat storage density by mass than pure calcium chloride. Moreover, it can be easily regenerated, which was impossible in the pure thermochemical materials.

차세대 이차전지용 아연 이온 이차전지 소재 연구 개발 동향 (Recent Research Trend of Zinc-ion Secondary Battery Materials for Next Generation Batterie)

  • 조정근;김재국
    • 세라미스트
    • /
    • 제21권4호
    • /
    • pp.312-330
    • /
    • 2018
  • Energy storage/conversion has become crucial not only to meet the present energy demand but also more importantly to sustain the modern society. Particularly, electrical energy storage is critical not only to support electronic, vehicular and load-levelling applications but also to efficiently commercialize renewable energy resources such as solar and wind. While Li-ion batteries are being intensely researched for electric vehicle applications, there is a pressing need to seek for new battery chemistries aimed at stationary storage systems. In this aspect, Zn-ion batteries offer a viable option to be utilized for high energy and power density applications since every intercalated Zn-ion yields a concurrent charge transfer of two electrons and thereby high theoretical capacities can be realized. Furthermore, the simplicity of fabrication under open-air conditions combined with the abundant and less toxic zinc element makes aqueous Zn-ion batteries one of the most economical, safe and green energy storage technologies with prospective use for stationary grid storage applications. Also, Zn-ion batteries are very safe for next-generation technologies based on flexible, roll-up, wearable implantable devices the portable electronics market. Following this advantages, a wide range of approaches and materials, namely, cathodes, anodes and electrolytes have been investigated for Zn-ion batteries applications to date. Herein, we review the progresses and major advancements related to aqueous. Zn-ion batteries, facilitating energy storage/conversion via $Zn^{2+}$ (de)intercalation mechanism.