• Title/Summary/Keyword: Energy spectrum

Search Result 1,622, Processing Time 0.028 seconds

INVERSE ENERGY CASCADE AND MAGNETIC HELICITY IN 3-DIMENSIONAL DRIVEN ELECTRON MAGNETOHYDRODYNAMIC TURBULENCE

  • Kim, Hoon-Kyu;Cho, Jun-Hyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.112.1-112.1
    • /
    • 2011
  • We present numerical simulations of inverse energy cascade and in driven three-dimensional (3D) electron magnetohydrodynamic (EMHD) turbulence. It has been known that inverse energy cascade only occurs in two-dimensional (2D) turbulence. However, we demonstrate that inverse energy cascade occurs in 3D driven EMHD turbulence. When magnetic helicity is injected on a small-scale, magnetic energy goes up to larger scales. The energy spectrum clearly shows inverse energy cascade. At the same time, magetic helicity spectrum also shows that the helicity goes up to larger scales. We obviously confirm inverse energy cascade. Net magnetic helicity for scales larger than the driving scale shows linear growth, and magnetic energy shows non-linear growth. On the other hand, when we drived turbulence without magnetic helicity, we do not observe inverse energy cascade.

  • PDF

Analysis of Effectiveness of Spectrum of Energy and Image Quality Evaluation by Aluminium Filter in the added Compound Filtration (에너지 스펙트럼과 화질평가를 통한 복합부가여과에서 알루미늄 여과판의 효율성 분석)

  • Kim, Sang-Hyun;Choi, Jae-Ho
    • Journal of radiological science and technology
    • /
    • v.38 no.3
    • /
    • pp.187-197
    • /
    • 2015
  • This study analysed the effectiveness of aluminium(Al) filter in the added compound filtration for the removal of characteristic radiation by energy spectrum and image evaluation. 0.1, 0.2, 0.3 mm copper with and without 1 mm Al were evaluated. The energy spectrum was measured using the GATE and evaluated separately by each energy. Image quality was evaluated by PSNR, MAE, MSE, CNR, SNR and qualitative analysis was performed by seven items for resolution and contrast from chest x-ray criteria of National Cancer Screening and Cardiovascular evaluation table. In the analysis of the quality of the energy per photon spectrum with the exception of a low energy region, without Al were superior in all area. PSNR MAE, MSE, CNR, SNR and qualitative analysis were the same or slightly better. PSNR was over 30 dB and all significant and the p>0.05 in the T-test of qualitative analysis. The energy spectrum and image quality have little difference between before and after use of Al filter. Therefore, it is effective to use the Al filter for the radiation dose management with the compensation capability of DR system.

Cooperative Spectrum Sensing with Distance Based Weight for Cognitive Radio Systems (인지무선 시스템을 위한 거리기반 가중치가 적용된 협력 스펙트럼 센싱)

  • Lee, So-Young;Lee, Jae-Jin;Kim, Jin-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.7
    • /
    • pp.45-50
    • /
    • 2010
  • In this paper, we analysis the performance of cooperative spectrum sensing with distance based weight for cognitive radio (CR) systems and CR systems sense the spectrum of the licensed user by using a energy detection method. Threshold is determined in accordance with the constant false alarm rate (CFAR) algorithm for energy detection. The signal of licensed user is OFDM signal and the wireless channel between a licensed user and CR systems is modeled as Gaussian channel. From the simulation results, the cooperative spectrum sensing with distance based weight combining (DWC) and equal gain combing (EGC) methods shows higher spectrum sensing performance than single spectrum sensing does. And the detection probability performance with the DWC is higher than that with the EGC.

Development of Dual Energy Radiation Detector (이중 에너지 방사선 검출기 개발)

  • Yeo, Hwa-Yeon
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.3
    • /
    • pp.5-11
    • /
    • 2010
  • In this paper, we are suggested development of dual-mode detector for dual-energy digital radiography. Design of dual-energy radiography module for commercial BIS (Baggage Inspection System) is used in the spectrum of the X-ray generator and detector for dual-mode features and radiological characteristics were analyzed. BIS suggestl on the image detector module being used to target X-ray tube to simulate X-ray spectrum and simulated spectrum to offer through the new radiographic characteristics of the detector modules were investigated. Using X-ray experiments with an increase in the thickness of the copper filter low energy detector (LED) and high-energy detector (HED) as the difference between the output signal increases. HED, especially in the size of the output signal decreases with increasing thickness of the copper filter was found.

An Effect of Energy Group Structure and Weighting Spectrum at the Resonance Energy Region of Iron on Neutron Shielding Calculation (철의 공명에너지 영역의 에너지군구조 및 가중스펙트럼이 중성자 차폐계산에 미치는 영향)

  • Jung-Do Kim;Yukio Ishiguro
    • Nuclear Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.129-135
    • /
    • 1985
  • Effects of differences between fine- and broad-group structures and spectrum as a weighting function at the resonance energy region of iron on a neutron shielding calculation were analyzed with the ANISN code and ENDF/B-IV data. The problems analyzed are the broad-group effect, the effect for variation of iron thickness, and the effect of problem-dependent weighting spectrum. In order to verify the group data and method used, a calculational benchmark was performed with the continuous-energy Monte Carlo code VIM. The result was compared with the ANISN calculations using the fine- and broad-group data.

  • PDF

Robust Spectrum Sensing for Blind Multiband Detection in Cognitive Radio Systems: A Gerschgorin Likelihood Approach

  • Qing, Haobo;Liu, Yuanan;Xie, Gang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1131-1145
    • /
    • 2013
  • Energy detection is a widely used method for spectrum sensing in cognitive radios due to its simplicity and accuracy. However, it is severely affected by the noise uncertainty. To solve this problem, a blind multiband spectrum sensing scheme which is robust to noise uncertainty is proposed in this paper. The proposed scheme performs spectrum sensing over the total frequency channels simultaneously rather than a single channel each time. To improve the detection performance, the proposal jointly utilizes the likelihood function combined with Gerschgorin radii of unitary transformed covariance matrix. Unlike the conventional sensing methods, our scheme does not need any prior knowledge of noise power or PU signals, and thus is suitable for blind spectrum sensing. In addition, no subjective decision threshold setting is required in our scheme, making it robust to noise uncertainty. Finally, numerical results based on the probability of detection and false alarm versus SNR or the number of samples are presented to validate the performance of the proposed scheme.

A Spectrum Sensing Scheme with Unknown Deterministic Signal Environment (예측 가능한 신호 환경에서의 스펙트럼 센싱 기법)

  • Kim, Jeong-Hoon;Asif, Iqbal;Khuandaga, Gulmira;Kwak, Kyung-Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.3
    • /
    • pp.85-94
    • /
    • 2011
  • Spectrum sensing is one of the most important technologies in cognitive radio. Although many studies have considered energy detection technique as the spectrum sensing technique, noise variance in practical systems is difficult to estimate accurately. Thus, in the real system, the probability of false alarm will not be maintained constant. In this paper, with considering that the cognitive radio does not know the primary user's signal, we propose a new spectrum sensing scheme which can operate without the information of noise variance. Through simulations, we show that the proposed scheme can detect spectrum with the condition of unknown noise information and have robustness for the change of noise variance.

Collaborative Wideband Spectrum Sensing with Distance Based Weight Combining for Cognitive Radio System (인지무선 시스템을 위한 거리기반 가중결합을 이용한 협력 광대역 스펙트럼 센싱)

  • Lee, Mi-Sun;Kim, Yoon-Hyun;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.37-43
    • /
    • 2012
  • In this paper, we analysis wideband spectrum sensing with distance based weight combining for Cognitive Radio (CR) systems. CR systems is implemented the spectrum of the Primary User(PU) by using a energy detection method. Threshold is determined in accordance with the constant false alarm rate (CFAR) algorithm for energy detection. The signal of PU is BPSK signal and the wireless channel between a PU and CR systems is modeled as Gaussian channel. From the simulation results, the wideband sensing with distance based and Distance based weight Combing (DWC) methods shows higher spectrum sensing performance than single CR user spectrum sensing.

Development of Korean Standard Horizontal Design Spectrum Based on the Domestic and Overseas Intra-plate Earthquake Records (국내외 판내부 지진기록을 이용한 한국 표준수평설계스펙트럼의 개발)

  • Kim, Jae Kwan;Kim, Jung Han;Lee, Jin Ho;Heo, Tae Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.369-378
    • /
    • 2016
  • The design spectrum for Korea, which is known to belong to an intra-plate region, is developed from the ground motion records of the earthquakes occurred in Korea and overseas intra-plate regions. The horizontal spectrum is defined as geometric mean spectrum, GMRotI50. From the statistical analysis of the geometric mean spectra, a mean plus one standard deviation spectrum in lognormal distribution is obtained. Regression analysis is performed on this curve to determine the shape of spectrum including transition periods. The developed design spectrum is valid for the estimation both spectral acceleration and displacement.

Dosimetrical Analysis of Reactor Leakage Gamma-rays by Means of Scintillation Spectrometry

  • Jun, Jae-Shik
    • Nuclear Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.291-309
    • /
    • 1973
  • Exposure rates due to leakage gamma-rays from operating reactors TRIGA Mark II and III were measured in a horizontal plane by means of scintillation spectrometry using a 3"$\times$3" cylindrical Nal(T1) detector associated with a 400 channel pulse height analyzer under varied conditions of reactor operation. In determining exposure rate due to the leakage gamma-rays at each point of measurement, Moriuchi's spectrum-exposure rate conversion theory was applied instead of using conventional responce matrix method which necessitates very complicated procedures to convert a spectrum into exposure rate. The results show that a basic pattern of "typical" spectrum of the reactor leakage gamma-rays is neither affected by thermal output of the reactor, nor influenced by overall attenuation in radiation intensity. It was indicated that he attenuation of the leakage gamma-rays in air in terms of exposure rate as a whole follows an exponential law, and the total exposure rate due to the leakage gamma-rays at a certain point is nearly proportional to thermal output of the reactor. The complexity in spectrum measured for a movable core reactor, TRIGA Mark III, was analyzed through spectrum resolution, and proper judgement of the leakage gamma-rays in a complex spectrum was discussed.ctrum was discussed.

  • PDF