• Title/Summary/Keyword: Energy saving

Search Result 2,734, Processing Time 0.037 seconds

A study on the ventilation control method of road tunnel for small vehicles (소형차 전용 도로터널의 환기기 제어방안에 대한 연구)

  • Ryu, Ji-Oh;Lee, Hu-Young;Chang, Ji-Don
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.749-762
    • /
    • 2019
  • In recent years, in urban areas, underground of roads are being promoted in order to resolve traffic congestion and to secure green spaces, and due to the low ratio of large vehicles, they are planned or constructed as road tunnels for small cars only. In addition, the tunnels being built in the city is a tendency to be enlarged to play the role of main roads. Accordingly, the capacity of the ventilation system is increasing and various ventilation methods are required, and the importance of maintenance after the completion of the tunnel such as the operating cost of the ventilation system is emphasized. Therefore, the need for optimization of the operation stage for reducing the power consumption of the ventilation system and the study of the ventilation system operation control logic is increasing. In this study, the study on the necessity of the optimization of operation stage and control logic of the ventilation system was carried out to realize the energy-saving operation for the small car only passing through tunnels which is applied of ① jet fan and combination ventilation system (② jet fan + air purifying equipment, ③ jet fan + vertical shaft, ④ jet fan + supply air semi-transverse). As a result of this study, there can be various operating combinations in the case of the combined ventilation system, and even though the amount of ventilation air is the same, the operating power varies greatly according to the operating combinations. It was found that operating the axial fan first rather than the jet fan first operation method has an effect on power saving.

Evaluation Method of Green Construction Technologies Using Integrated LCC and LCA Analysis (LCC-LCA 통합 분석에 의한 친환경 건설기술 평가방법)

  • Kim, Yoon-Duk;Cha, Hee-Sung;Kim, Kyung-Ra;Shin, Dong-Woo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.3
    • /
    • pp.91-100
    • /
    • 2011
  • Green technologies of buildings are spreading for saving resource and energy consumption during life cycle of buildings. However, selection of optimized the technologies for applying projects is needed a lot of time and costs. Therefore prioritization is necessary to apply the technologies for buildings. An evaluation of economic value for the technologies is significant for prioritization of the technologies, however, the current evaluation system of economic value for technologies is not reflected the accurate features of the technologies. Green technologies have the objectives for reducing the emission of CO2 and saving the cost during the whole lifecycle of buildings. Thus the evaluation of economic feasibility for green technologies is needed to include the economic value from improving the environment. This paper developed the economic evaluation method integrated with LCC and LCA to accurately analyze the economic value for green technologies. Moreover, this paper drew the priority of the technologies by conducting case studies with the integrated method and analyzing the results with AHP. The conclusion of case studies, Green technologies is worth more if to include the economic value from improving the environment. Then in analysis of priority, Green intelligent component technologies were rated the highest. The conclusion of the study is able to utilize the supporting tool for making decision to select the optimized technologies for the projects and precedence study for developing future research of prioritization for green technologies. The future study for improving the developed method will supplement the various evaluation factors and apply the detailed weight to analyze the priority of green technologies.

Development of Home Electrical Power Monitoring System and Device Identification Algorithm (가정용 전력 모니터링 시스템 및 장치식별 알고리즘 개발)

  • Park, Sung-Wook;Seo, Jin-Soo;Wang, Bo-Hyeun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.407-413
    • /
    • 2011
  • This paper presents an electrical power monitoring system for home energy management and an automatic appliance-identification algorithm based on the electricity-usage patterns collected during the monitoring tests. This paper also discusses the results of the field tests of which the proposed system was voluntarily deployed at 13 homes. The proposed monitoring system periodically measures the amount of power consumption of each appliance with a pre-specified time interval and effectively displays the essential information provided by the monitored data which is required users to know in order to save power consumption. Regarding the field tests of the monitoring system, the households responded that the system was useful in saving electricity and especially the electricity-usage patterns per appliances. They also considered that the predicted amount of the monthly power consumption was effective. The proposed appliance-identification algorithm uses 4 patterns: Zero-Crossing Rate(ZC), Variation of On State(VO), Slope of On State(SO) and Duty Cycle(DC), which are applied over the 2 hour interval with 25% of it on state, and it yielded 82.1% of success rate in identifying 5 kinds of appliances: refrigerator, TV, electric rice-cooker, kimchi-refrigerator and washing machine.

Heat Storage Material by Using Phase Change Materials to Control Buildings Thermal Environment Characteristics (건축물 열환경 특성제어를 위한 상변화 축열재)

  • Yun, Huy-Kwan;Han, Seong-Kuk;Shim, Myeong-Jin;Ahn, Dae-Hyun;Lee, Woong-Mok;Park, Jong-Soon;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.522-526
    • /
    • 2010
  • Heat storage application techniques can be categorized into the sensible heat storage and the latent heat storage according to the method of heat storage. Heat storage is the way of saving remaining heat when heating and cooling loads are light, and then using it when the heating and cooling loads are heavy. Latent heat storage is defined as the method of saving heat by using substances which have high potential heat when phase change is in the range of a certain temperature and when heat storage space is small, compared to those of sensible heat storage and it is possible that absorption and emission of heat at a certain temperature. This study is conducted to save energy when either air-conditioning or heating is operated in a building. We have tried to find out the essential properties of matter and the optimum mixing rate about cement and gypsum for building materials, which have been widely used for proper phase change materials (PCM), when thermal environment property is applied. So we obtained the result of the cooling delay effect about 19% with heat storage mortar containing 3 wt% of PCM.

Improvement of Energy Density in Supercapacitor by Ion Doping Control for Energy Storage System (에너지 저장장치용 슈퍼커패시터 이온 도핑 제어를 통한 에너지 밀도 향상 연구)

  • Park, Byung-jun;Yoo, SeonMi;Yang, SeongEun;Han, SangChul;No, TaeMoo;Lee, Young Hee;Han, YoungHee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.209-213
    • /
    • 2019
  • Recently, demand for high energy density and long cycling stability of energy storage system has increased for application using with frequency regulation (F/R) in power grid. Supercapacitor have long lifetime and high charge and discharge rate, it is very adaptable to apply a frequency regulation in power grid. Supercapacitor can complement batteries to reduce the size and installation of batteries. Because their utilization in a system can potentially eliminate the need for short-term frequent replacement as required by batteries, hence, saving the resources invested in the upkeep of the whole system or extension of lifecycle of batteries in the long run of power grid. However, low energy density in supercapacitor is critical weakness to utilization for huge energy storage system of power grid. So, it is still far from being able to replace batteries and struggle in meeting the demand for a high energy density. But, today, LIC (Lithium Ion Capacitor) considered as an attractive structure to improve energy density much more than EDLC (Electric double layer capacitor) because LIC has high voltage range up to 3.8 V. But, many aspects of the electrochemical performance of LIC still need to be examined closely in order to apply for commercial use. In this study, in order to improve the capacitance of LIC related with energy density, we designed new method of pre-doping in anode electrode. The electrode in cathode were fabricated in dry room which has a relative humidity under 0.1% and constant electrode thickness over $100{\mu}m$ was manufactured for stable mechanical strength and anode doping. To minimize of contact resistance, fabricated electrode was conducted hot compression process from room temperature to $65^{\circ}C$. We designed various pre-doping method for LIC structure and analyzing the doping mechanism issues. Finally, we suggest new pre-doping method to improve the capacitance and electrochemical stability for LIC.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013 (설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

Moving Distance of Laborer in the Kitchen for Systematic of the Korean Foods (한식(韓食)의 편의식화(便宜食化)를 위한 주방동선(?房動線)에 관한 연구)

  • Park, Hyung-Woo;Koh, Ha-Young;Kang, Tong-Sam
    • Journal of the Korean Society of Food Culture
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1987
  • In order to develop a convenient Korean food service system in commercial kitchen, processing procedure and recipe of 10 kinds of Korean food to be served as a convenient foods were decided. Moving distance and required energy of laborer in the commercial and model restaurants which have the area of $62.8m^2$ and $32.4m^2$, respectively, were measured by arranging these machinery. The results obtained were summarized as follows. In case of restaurant with the area of $62.8m^2$, moving distance, working hours and required energy of laborers were 1,922m, 2,986min and 4,704kcal in C-store, 2,134m, 3,173min and 5,001.7kcal in T-store, and 1,704m, 2,808min and 4,414.5kcal in model restaurant, respectively. Therefore energy requirements of the model restaurant were less 289.5kcal (4.5%) and 587.2kcal (10.1%) than those of C and T store. In case of restaurant with the area of $32.4m^2$, moving distance, working hours and required energy of laborer in S store were 1,277m, 2,926min and 4,588kcal, 1,425m, 3,108min and 4,873.8kcal in H restaurant and 1,167m, 2,798min and 4,381.4kcal in model restaurant, respectively. Therefore energy requirements of the model restaurant were less 206.6kcal (4.7%) and 492.4kcal (11.2%) than those of S store and H restaurant. When 6 kinds of convenient foods and 4 kinds of direct cooking foods were produced, moving distance, working hours and required energy of laborer in S store were 554.7m, 972min and 1,586.0kcal, 684.7m, 991min and 1,579.2kcal in H restaurant, 523.1m, 938min and 1,479.5kcal in model restaurant. Therefore energy requirements of the model restaurant were less 99.7kcal(6.7%) and 106.5kcal(7.2%) than those of S store and H restaurant. In case of the energy saving system kitchen, moving distance and required energy were saved less by 42% and by 20.4% than those of model kitchen, respectively.

  • PDF

A study on the engineering optimization for the commercial scale coal gasification plant (상용급 석탄가스화플랜트 최적설계에 관한 연구)

  • Kim, Byeong-Hyeon;Min, Jong-Sun;Kim, Jae-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.131.1-131.1
    • /
    • 2010
  • This study was conducted for engineering optimization for the gasification process which is the key factor for success of Taean IGCC gasification plant which has been driven forward under the government support in order to expand to supply new and renewable energy and diminish the burden of the responsibility for the reduction of the green house gas emission. The gasification process consists of coal milling and drying, pressurization and feeding, gasification, quenching and HP syngas cooling, slag removal system, dry flyash removal system, wet scrubbing system, and primary water treatment system. The configuration optimization is essential for the high efficiency and the cost saving. For this purpose, it was designed to have syngas cooler to recover the sensible heat as much as possible from the hot syngas produced from the gasifier which is the dry-feeding and entrained bed slagging type and also applied with the oxygen combustion and the first stage cylindrical upward gas flow. The pressure condition inside of the gasifier is around 40~45Mpg and the temperature condition is up to $1500{\sim}1700^{\circ}C$. It was designed for about 70% out of fly ash to be drained out throughout the quenching water in the bottom part of the gasifier as a type of molten slag flowing down on the membrane wall and finally become a byproduct over the slag removal system. The flyash removal system to capture solid particulates is applied with HPHT ceramic candle filter to stand up against the high pressure and temperature. When it comes to the residual tiny particles after the flyash removal system, wet scurbbing system is applied to finally clean up the solids. The washed-up syngas through the wet scrubber will keep around $130{\sim}135^{\circ}C$, 40~42Mpg and 250 ppmv of hydrochloric acid(HCl) and hydrofluoric acid(HF) at maximum and it is turned over to the gas treatment system for removing toxic gases out of the syngas to comply with the conditions requested from the gas turbine. The result of this study will be utilized to the detailed engineering, procurement and manufacturing of equipments, and construction for the Taean IGCC plant and furthermore it is the baseline technology applicable for the poly-generation such as coal gasification(SNG) and liquefaction(CTL) to reinforce national energy security and create new business models.

  • PDF

Speed Control for BLDC Motors Using a Two-Degree-of-Freedom Optimal Control Technique (2자유도 적분형 최적제어법을 이용한 BLDC 모터의 속도제어)

  • 권혁진;정석권
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.3
    • /
    • pp.257-265
    • /
    • 2000
  • Brushless DC(BLDC) motors are widely used as AC servo motors in factory automation fields because of their quick instantaneous mobility, good energy saving efficiency and easiness of design for control system comparing with induction motors. Recently, a Two-Degree-of-Freedom(2DOF) PI control law has been adopted to some application parts to accomplish an advanced speed control of BLDC motors. The method can treat the two conflicting performances, minimum tracking errors versus reference inputs without large overshoot and rejection of some disturbances including modeling errors, independently. However, the method can not design the optimal system which is able to minimize tracking errors and energy consumption simultaneously. In this paper, a 2DOF integral type optimal servo control method is investigated to promote the speed control performances of BLDC motors considering energy consumption. In order to applicate the method to the speed servo system of the BLDC motor, the motor is modeled in the state space using the vector control and decoupling technique. To verify the validity of the suggested method, some simulations and experiments are performed.

  • PDF

The Effect of The Index of Indoor Environment on The Productivity (실내환경지수가 생산성에 미치는 영향)

  • Kim, Myung-Ho;Lee, Ye-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.615-621
    • /
    • 2018
  • To enhance the energy saving and comfort of indoors, this study performed a stimulation of sound fluctuation, color temperature, and aroma. The experiment with EEG, HRV, and Vibra images was conducted in an environmental test room with a temperature of $25[^{\circ}C]$, relative humidity of 50[RH%], air current speed of 0.002[m/s], and illuminance of 1000[lux]. The stimulation experiment set up different sensory stimulation conditions, such as before exposure, single-sensory stimulation of fluctuation a=1.106 jazz music, single-sensory stimulation of RED color lighting, single-sensory stimulation of scent aroma, and multi-sensory stimulation of fluctuation a=1.106 jazz music, RED color lighting, and scent aroma. After the multi-sensory stimulation of fluctuation a=1.106 jazz music, RED color lighting and scent aroma, the capacity for work and attention were increased, and the stress index and fatigue degree were decreased. In addition, multi-sensory stimulation of fluctuation a=1.106 jazz music, RED color lighting, and scent aroma were effective in maintaining a stable heart and health. In addition, the Vibra image appeared to decrease tension/anxiety and stress. The multi-sensory stimulation of fluctuation a=1.106 jazz music, RED color lighting, and scent aroma help increase the Neuro-energy more than that by no exposure and single-sensory stimulation.