• 제목/요약/키워드: Energy safety

검색결과 4,533건 처리시간 0.039초

후쿠시마 원전사고 종적사례연구를 통한 원전에너지 안전성 고찰 (Nuclear Safety: A Longitudinal Case Study from the Fukushima Nuclear Disaster)

  • 이준혁;진영민;조영혁;이순홍
    • 한국안전학회지
    • /
    • 제31권1호
    • /
    • pp.139-147
    • /
    • 2016
  • Nuclear energy is considerably cheap and clean compared to other fossil fuels. Yet, there are rising safety concerns of nuclear power plants including the possibility of radiation releasing nuclear accidents. In light of the Fukushima nuclear crisis in 2011, Japan has been re-evaluating their existing energy policies and increasing the share of alternative energy. This paper first tracks the major historical changes of energy policy in Japan by time period. Next, energy security, reignited concerns and alternative energy are covered to examine Japan's energy security situation and its transition after the Fukushima disaster. Lastly, a short survey based on thematic analysis was conducted in South Korea and Japan to understand the public awareness of nuclear. This paper postulates that the case of Fukushima will contribute to establish and operate a safe-future nuclear program in South Korea, given that the country is not only geographically neighbouring Japan but also the world's fourth largest producer of nuclear energy.

재생에너지 기반 알칼라인 수전해 장치(2 Nm3/hr) 위험요인 고찰 (A Study on Hazard of Renewable Energy based Alkaline Water Exectrolysis Equipment)

  • 김현기;서두현;김태훈;이광원;이동민;신단비
    • 한국수소및신에너지학회논문집
    • /
    • 제33권1호
    • /
    • pp.55-60
    • /
    • 2022
  • As interest in sustainable and eco-friendly energy sources is increasing due to various problems in the carbon society, a hydrogen economy using hydrogen as a main energy source is emerging. While the natural gas reforming method generates carbon dioxide, the water electrolysis method based on renewable energy is eco-friendly. The water electrolysis device currently being developed uses a 2 Nm3/hr class alkaline aqueous solution as an electrolyte and produces hydrogen based on renewable energy. In this study, risk assessment was conducted for these water electrolysis devices

IDENTIFICATION OF SAFETY CONTROLS FOR ENGINEERING-SCALE PYROPROCESS FACILITY

  • MOON, SEONG-IN;SEO, SEOK-JUN;CHONG, WON-MYUNG;YOU, GIL-SUNG;KU, JEONG-HOE;KIM, HO-DONG
    • Nuclear Engineering and Technology
    • /
    • 제47권7호
    • /
    • pp.915-923
    • /
    • 2015
  • Pyroprocess technology has been considered as a fuel cycle option to solve the spent fuel accumulation problems in Korea. The Korea Atomic Energy Research Institute, Daejeon, Korea has been studying pyroprocess technology, and the conceptual design of an engineering-scale pyroprocess facility, called the Reference Engineering-scale Pyroprocess Facility, has been performed on the basis of a 10 ton heavy metal throughput per year. In this paper the concept of Reference Engineering-scale Pyroprocess Facility is introduced along with its safety requirements for the protection of facility workers, collocated workers, the off-site public, and the environment. For the identification of safety structures, systems, and components and/or administrative controls, the following activities were conducted: (1) identifying hazards associated with operations; (2) identifying potential events associated with these hazards; and (3) identifying the potential preventive and/or mitigative controls that reduce the risk associated with these accident events. This study will be used to perform a safety evaluation for accidents involving any of the hazards identified, and to establish safety design policies and propose a more definite safety design.

FMEA를 이용한 수소 국제표준 제정의 방법론 (Methodology for the International Standardization of Hydrogen using FMEA)

  • 구연진;강병익;임상식;조영도
    • 한국가스학회지
    • /
    • 제22권4호
    • /
    • pp.7-12
    • /
    • 2018
  • 수소 에너지는 20 세기 대표에너지인 석유, 석탄의 대체 에너지로 각광받고 있다. 또한, 수소에너지가 가지고 있는 미세먼지 제로, 풍부한 에너지원 그리고 생태계의 무영향 등의 이점은 다른 신재생 에너지원보다 비교우의를 점하도록 하고 있다. 하지만, 수소 에너지의 명확하지 못한 제품 개발기준과 사용법은 수소 에너지 관련 제품군의 사고 위험도를 높이고, 수소의 높은 에너지 준위는 사고 발생 시, 큰 사회적 문제를 일으킬 요소를 내재하고 있다. 따라서, 본 연구는 빠른 수소 에너지의 표준화 방안을 제시하여 신제품 개발이 대부분인 수소 에너지 관련 제품의 안전한 시장 정착에 도움을 주고자 한다.

OVERVIEW OF RECENT EFFORTS THROUGH ROSA/LSTF EXPERIMENTS

  • Nakamura, Hideo;Watanabe, Tadashi;Takeda, Takeshi;Maruyama, Yu;Suzuki, Mitsuhiro
    • Nuclear Engineering and Technology
    • /
    • 제41권6호
    • /
    • pp.753-764
    • /
    • 2009
  • JAEA started the LSTF experiments in 1985 for the fourth stage of the ROSA Program (ROSA-IV) for the LWR thermal-hydraulic safety research to identify and investigate the thermal-hydraulic phenomena and to confirm the effectiveness of ECCS during small-break LOCAs and operational transients. The LSTF experiments are underway for the ROSA-V Program and the OECD/NEA ROSA Project that intends to resolve issues in thermal-hydraulic analyses relevant to LWR safety. Six types of the LSTF experiments have been done for both the system integral and separate-effect experiments among international members from 14 countries. Results of four experiments for the ROSA Project are briefly presented with analysis by a best-estimate (BE) code and a computational fluid dynamics (CFD) code to illustrate the capability of the LSTF and codes to simulate the thermal-hydraulic phenomena that may appear during SBLOCAs and transients. The thermal-hydraulic phenomena dealt with are coolant mixing and temperature stratification, water hammer up to high system pressure, natural circulation under high core power condition, and non-condensable gas effect during asymmetric SG depressurization as an AM action.

Neutronics analysis of JSI TRIGA Mark II reactor benchmark experiments with SuperMC3.3

  • Tan, Wanbin;Long, Pengcheng;Sun, Guangyao;Zou, Jun;Hao, Lijuan
    • Nuclear Engineering and Technology
    • /
    • 제51권7호
    • /
    • pp.1715-1720
    • /
    • 2019
  • Jozef Stefan Institute (JSI), TRIGA Mark II reactor employs the homogeneous mixture of uranium and zirconium hydride fuel type. Since its upgrade, a series of fresh fuel steady state experimental benchmarks have been conducted. The benchmark results have provided data for testing computational neutronics codes which are important for reactor design and safety analysis. In this work, we investigated the JSI TRIGA Mark II reactor neutronics characteristics: the effective multiplication factor and two safety parameters, namely the control rod worth and the fuel temperature reactivity coefficient using SuperMC. The modeling and real-time cross section generation methods of SuperMC were evaluated in the investigation. The calculation analysis indicated the following: the effective multiplication factor was influenced by the different cross section data libraries; the control rod worth evaluation was better with Monte Carlo codes; the experimental fuel temperature reactivity coefficient was smaller than calculated results due to change in water temperature. All the results were in good agreement with the experimental values. Hence, SuperMC could be used for the designing and benchmarking of other TRIGA Mark II reactors.

SAFETY ASSESSMENT OF KOREAN NUCLEAR FACILITIES: CURRENT STATUS AND FUTURE

  • Baek, Won-Pil;Yang, Joon-Eon;Ha, Jae-Joo
    • Nuclear Engineering and Technology
    • /
    • 제41권4호
    • /
    • pp.391-402
    • /
    • 2009
  • This paper introduces the development of safety assessment technology in Korea, focusing on the activities of the Korea Atomic Energy Research Institute in the areas of system thermal hydraulics, severe accidents and probabilistic safety assessment. In the 1970s and 1980s, safety analysis codes and methodologies were introduced from the United States, France, Canada and other developed countries along with technology related to the construction and operation of nuclear power plants. The main focus was on understanding and utilizing computer codes that were sourced from abroad up to the early 1990s, when efforts to develop domestic safety analysis codes and methodologies became active. Remarkable achievements have been made over the last 15 years in the development and application of safety analysis technologies. In addition, significant experimental work has been performed to verify the safety characteristics of reactors and fuels as well as to support the development and validation of analysis methods.

The TANDEM Euratom project: Context, objectives and workplan

  • C. Vaglio-Gaudard;M.T. Dominguez Bautista;M. Frignani;M. Futterer;A. Goicea;E. Hanus;T. Hollands;C. Lombardo;S. Lorenzi;J. Miss;G. Pavel;A. Pucciarelli;M. Ricotti;A. Ruby;C. Schneidesch;S. Sholomitsky;G. Simonini;V. Tulkki;K. Varri;L. Zezula;N. Wessberg
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.993-1001
    • /
    • 2024
  • The TANDEM project is a European initiative funded under the EURATOM program. The project started on September 2022 and has a duration of 36 months. TANDEM stands for Small Modular ReacTor for a European sAfe aNd Decarbonized Energy Mix. Small Modular Reactors (SMRs) can be hybridized with other energy sources, storage systems and energy conversion applications to provide electricity, heat and hydrogen. Hybrid energy systems have the potential to strongly contribute to the energy decarbonization targeting carbon-neutrality in Europe by 2050. However, the integration of nuclear reactors, particularly SMRs, in hybrid energy systems, is a new R&D topic to be investigated. In this context, the TANDEM project aims to develop assessments and tools to facilitate the safe and efficient integration of SMRs into low-carbon hybrid energy systems. An open-source "TANDEM" model library of hybrid system components will be developed in Modelica language which, by coupling, will extend the capabilities of existing tools implemented in the project. The project proposes to specifically address the safety issues of SMRs related to their integration into hybrid energy systems, involving specific interactions between SMRs and the rest of the hybrid systems; new initiating events may have to be considered in the safety approach. TANDEM will study two hybrid systems covering the main trends of the European energy policy and market evolution at 2035's horizon: a district heating network and power supply in a large urban area, and an energy hub serving energy conversion systems, including hydrogen production; the energy hub is inspired from a harbor-like infrastructure. TANDEM will provide assessments on SMR safety, hybrid system operationality and techno-economics. Societal considerations will also be encased by analyzing European citizen engagement in SMR technology safety.