• Title/Summary/Keyword: Energy rose

Search Result 133, Processing Time 0.028 seconds

Feasibility study of wind power generation considering the topographical characteristics of Korea (우리나라 지형특성을 고려한 풍력발전 타당성 연구)

  • Moon, Chae-Joo;Cheang, Eui-Heang;Shim, Kwan-Shik;Jung, Kwen-Sung;Chang, Young-Hak
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.24-32
    • /
    • 2008
  • This paper discussed the Feasibility study of wind power generation considering the topographical characteristics of Korea. In order to estimate the exact generation of wind power plants, we analyzed and compared wind resources in mountain areas and plain areas by introducing not only wind speed, the most important variable, but also wind distribution and wind standard deviation that can reflect the influence of landform sufficiently. According to the results of this study, generation was almost the same at wind power plants installed in southwestern coastal areas where wind speed was low as at those installed in mountain areas in Gangwondo where wind speed was high. This demonstrates that the shape parameter of wind distribution is low due to the characteristics of mountain areas, and the standard deviation of wind speed is large due to the effect of mountain winds, therefore, actual generation compared to southwestern coastal areas is almost similar in mountain areas even though wind speed is high.

Effect of Catholyte to Anolyte Amount Ratio on the Electrodialysis Cell Performance for HI Concentration (Anolyte와 Catholyte의 비율에 따른 HI 농축 전기투석 셀의 성능변화)

  • Kim, Chang-Hee;Cho, Won-Chul;Kang, Kyoung-Soo;Park, Chu-Sik;Bae, Ki-Kwang
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.507-512
    • /
    • 2010
  • The effect of catholyte to anolyte amount ratio on the electrodialysis cell performance for HI concentration was investigated. For this purpose, the electrodialysis cell was assembled with Nafion 117 as PEM membrane and activated carbon fiber cloth as electrodes. The initial amount of catholyte was 310 g and that of anolyte varied from 1 to 3 of amount ratio. The calculated electro motive force (EMF) increased with time and the increment enhanced as the amount ratio of catholyte to anolyte decreased. The mole ratios of HI to $H_2O$ (HI molarity) in catholyte were almost the same and exceeded pseudo-azeotropic composition for all amount ratios after 2 h operation. The HI molarity continuously increased with time for 10 h operation. The mole ratio of $I_2$ to HI decreased in catholyte but increased in anolyte. The increment of mole ratio of $I_2$ to HI in anolyte rose as the amount ratio of catholyte to anolyte decreased. In case of 1:1 amount ratio, the cell operation was stopped for the safety at approximately 6 h operation, since the mole ratio of $I_2$ to HI reached solubility limit. The cell voltage of the electrodialysis cell increased with time and the rate of increase was high at low amount ratio. This suggests that the amount ratio of catholyte to anolyte not only crucially influences the cell voltage, but also cell operation condition.

Structural Decomposition Analysis on Changes in Industrial Energy Use in Korea, 1980~2000 (구조분해분석을 통한 국내 산업별 에너지 소비 변화요인 연구)

  • Kim, Jin-Soo;Heo, Eunnyeong
    • Environmental and Resource Economics Review
    • /
    • v.14 no.2
    • /
    • pp.257-290
    • /
    • 2005
  • Korean energy use in industrial sector has increased more rapidly than other sectors during 1980~2000 periods. Relatively higher increases in industrial sector energy consumption raise questions whether government policy of rationalization of industrial energy use has been effective. In this study, we use 80-85-90 and 90-95-00 constant price input-output table to analyze increases in industrial energy use. Using an adjusted version of structural decomposition model introduced by Chen and Rose (1990), we decompose Changes of energy use into 17 elements. We classify entire industry sector into 32 sectors including four energy sectors (coal and coal products, refined petroleum, electricity and town gas). We then analyze changes of energy use by industrial level to check differences among industrial energy demand structures. Finally, we compare three industries, electronic product manufacturing, metal manufacturing and construction, that represent technology and capital intensive, energy and material intensive and labor and capital intensive industry. As results, we find that high energy using industries make the most effort to reduce energy use. Primary metal, petrochemical and mon-metal industries show improvements in elements such as energy and material productivity, energy and material imports, energy substitution and material substitutions towards energy saving. These results imply that although those industries are heavy users of energy, they put the best effort to reduce energy use relative to other industries. We find various patterns of change in industrial energy use at industrial level. To reduce energy use, electronic product manufacturing industry needs more effort to improve technological change element while construction industry needs more effort to improve material input structure element.

  • PDF

Effect of Fe Ion-Exchanged BEA Zeolite Catalysts on N2O Decomposition Reaction Following Heat-treatment Temperatures (Fe 이온이 담지된 BEA 제올라이트 촉매의 열처리 온도에 따른 N2O 분해반응에 대한 영향)

  • Jeong, Gi-Rim;Lee, Seung-Jae;Ryu, In-Soo;Moon, Seung-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.531-535
    • /
    • 2013
  • The effect of heat-treatment temperature on the activity of catalysts was studied by investigating $N_2O$ decomposition reaction in Fe ion-supported BEA Zeolite. As a result of $N_2O$ decomposition reaction experiment, $N_2O$ decomposition activity significantly decreased as heat-treatment temperature of Fe/BEA catalyst increased. the shape and size of the particles of Fe/BEA catalyst following the rise of heat-treatment temperature did not display a significant change. But following the rise of the heat-treatment temperature, its surface area was significantly reduced. Also it was confirmed that as the heat-treatment temperature rose, the crystallization of ${\beta}$ structure was greatly reduced. And as heat-treatment temperature rose, while SiO structure either increased or did not exhibit much change, the structure of Fe bonded with lattice structure was speculated to decrease. From the stated results, it was concluded that the increase of heat-treatment temperature became the cause of the declined activity of catalysts by destruction of its ${\beta}$ structure of bonding aluminium and Fe atoms.

Monitoring Variation of Tidal Channels associated with Shihwa Reclamation Project using Remote Sensing Approaches (원격탐사기반 시화호 간척사업과 갯골변화 관찰)

  • Park, Chanhyeok;Yu, Jaehyung;Kim, Jieun;Yang, Dong-Yoon
    • Economic and Environmental Geology
    • /
    • v.52 no.4
    • /
    • pp.299-312
    • /
    • 2019
  • This study analyzed variation of tidal channels associated with Shihwa reclamation project for corresponding observation period based on remote sensing approaches. The project period was subdivided to developing period, closed period, and open period based on developing and management plan of Shiwa lake, and number, length, width, and direction of tidal channels for each period were analyzed using CORONA, Landsat 5 TM, Landsat 7 ETM+, and orthorectified aerial photographs. Number of tidal channels decreased from developing to opening period while $3^{rd}$ order channles did not show noticeable changes. The length of tidal channels decreased during developing to closed period, and increasing trend of $2^{nd}$ and $3^{rd}$ order channels was observed for the opening period. The average widtrh of $2^{nd}$ and $3^{rd}$ order channels decreased from developing to closed period, and increased during open period. The direction of tidal channels showed NW and NE direction in general, while the rose diagram showed deacrased frequency of NE direction and increased frequency of NW direction during the open period. These variations in tidal channels are considered to be related to changes in tidal energy environment, where stable energy environment before the project was changed to disconnection of tidal energy by closed environment, and re-connection of the energy during the open period.

A Study on Improvement Measures of Energy Recovery Efficiency through Analysis of Operational Status of Municipal Solid Waste Incineration Facilities (생활폐기물 소각시설의 운영 실태 분석을 통한 에너지회수 효율 개선방안 검토)

  • Park, Sang-Jin;Phae, Chae-gun
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.762-769
    • /
    • 2018
  • This study was carried out to examine the improvement plan by analyzing the characteristics of imported wastes, operation rate, and benefits of energy recovery for incineration facilities with a treatment capacity greater than 50 ton/day. The incineration facility capacity increased by 3,280 tons over 15 years, and the actual incineration rate increased to 2,783 ton/day. The operation rate dropped to 76% in 2010 and then rose again to 81% in 2016. The actual calorific value compared to the design calorific value increased by 33.8% from 94.6% in 2002 to 128.4% in 2016. The recovery efficiency decreased by 29% over 16 years from 110.7% to 81.7% in 2002. Recovery and sales of thermal energy from the incinerator (capacity 200 ton/day) dominated the operation cost, and operating income was generated by energy sales (such as power generation and steam). The treatment capacity increased by 11% to 18% after the recalculation of the incineration capacity and has remained consistently above 90% in most facilities to date. In order to solve the problem of high calorific value waste, wastewater, leachate, and clean water should be mixed and incinerated, and heat recovery should be performed through a water-cooled grate and water cooling wall installation. Twenty-five of the 38 incineration facilities (about 70%) are due for a major repair. After the main repair of the facility, the operation rate is expected to increase and the operating cost is expected to decline due to energy recovery. Inspection and repair should be carried out in a timely manner to increase incineration and heat energy recovery efficiencies.

HEAT REMOVAL TEST USING A HALF SCALE STORAGE CASK

  • Bang, K.S.;Lee, J.C.;Seo, K.S.;Cho, C.H.;Lee, S.J.;Kim, J.M.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.143-148
    • /
    • 2007
  • Spent nuclear fuel generated at nuclear power plants must be safely stored during interim storage periods. A dry storage cask to safely store the spent nuclear fuel should be able to adequately emit the decay heat from the spent nuclear fuel. Therefore, heat removal tests using a half scale dry storage cask have been performed to estimate the heat transfer characteristics of a dry storage cask under normal, off-normal, and accident conditions. In the normal condition, the heat transfer rate to an ambient atmosphere by convective air through a passive heat removal system reached 83%. Accordingly, the passive heat removal system is designed well and works adequately. In the off-normal condition, the influence of a half blockage in the inlet on the temperature appears minimal. In the accident condition, the temperature rose for 12 hours after the accident, but the temperature rise steadied after 36 hours.

A study on 750kW Wind farm at Taean Costal National Park using WindPRO (WindPRO를 이용한 태안해안국립공원의 750kW 풍력발전단지 조성에 관한 연구)

  • Jeong, Yunmi;Kim, Jaekwang;Kim, Youngdal
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.181.2-181.2
    • /
    • 2010
  • 탄소함유 에너지원의 고갈과 가격상승, 이들 에너지 사용에 수반되는 지구 온난화 문제들로 세계는 새로운 에너지원을 도입하고자 노력하고 있다. 그 중 풍력에너지는 자원이 풍부하고 끊임없이 재생되며 광범위한 지역에 분포되어 있고, 운전 중에 온실가스의 배출이 없다는 점에서 가장 경제성이 있고 유용한 에너지원으로 인식되고 있다. 풍력발전기는 선진 국가에서부터 꾸준히 성장해 왔으며, 그 성능을 개선시키기 위하여 많은 연구가 진행되고 있다. 풍력발전기를 설치하여 발전단지를 조성함에 있어서 발전량을 예측하기 위해서 발전기가 세워질 모든 지점에 허브높이의 실측타워를 세워 풍황데이터를 측정하여야 하지만 이런 방법은 재정적인 부담이 매우 크다. 따라서 본 논문에서는 서산기상대에서 측정된 기상데이터를 이용하여 태안해안국립공원내 만리포해수욕장 지역의 풍황 및 발전량을 예측하였다. 이 때 풍황 및 발전량 예측은 풍력단지 설계를 목적으로 사용되고 있는 WindPRO Basic과 WAsP-Interface 모듈을 이용하였다. 이렇게 예측된 풍황을 이용하여 발전단지를 조성하고, PARK 모듈을 사용하여 발전단지의 에너지를 계산하였으며, WindBANK 모듈을 이용하여 단지의 경제성을 평가하였다.

  • PDF

Solid Reduction and Methane Production of Food Waste Leachate using Thermal Solubilization (열가용화를 이용한 음식물탈리여액의 고형물 감량화 및 메탄 생산에 관한 연구)

  • Choi, Jung Su;Kim, Hyun Gu;Joo, Hyun Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.559-567
    • /
    • 2014
  • Since the ocean dumping of organic wastes is prohibited under the London Convention, the need for land treatment of food waste leachate (FWL) has significantly been growing in recent years. This study was conducted to use thermal solubilization to turn FWL into a form that can easily be degraded during the anaerobic digestion process, thereby reducing the percentage of solids and increasing the production of methane. To derive the optimal operating conditions of thermal solubilization, a laboratory-scale reactor was built and operated. The optimal reaction temperature and time turned out to be $190^{\circ}C$ and 90 min, respectively. The BMP test showed a methane production of 465 mL $CH_4/g$ $COD_{Cr}$ and a biodegradation rate of 90.1%. The production of methane rose by about 15%, compared with no the application of thermal solubilization. To reduce the solid content of FWL and improve the methane production, therefore, it may be helpful to apply thermal solubilization to pre-treatment facilities for anaerobic digestion.

Building a Graphite Calorimetry System for the Dosimetry of Therapeutic X-ray Beams

  • Kim, In Jung;Kim, Byoung Chul;Kim, Joong Hyun;Chung, Jae-Pil;Kim, Hyun Moon;Yi, Chul-Young
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.810-816
    • /
    • 2017
  • A graphite calorimetry system was built and tested under irradiation. The noise level of the temperature measurement system was approximately 0.08 mK (peak to peak). The temperature of the core part rose by approximately 8.6 mK at 800 MU (monitor unit) for 6-MV X-ray beams, and it increased as X-ray energy increased. The temperature rise showed less spread when it was normalized to the accumulated charge, as measured by an external monitoring chamber. The radiation energy absorbed by the core part was determined to have values of $0.798J/{\mu}C$, $0.389J/{\mu}C$, and $0.352J/{\mu}C$ at 6 MV, 10 MV, and 18 MV, respectively. These values were so consistent among repeated runs that their coefficient of variance was less than 0.15%.