• Title/Summary/Keyword: Energy plus

Search Result 467, Processing Time 0.028 seconds

Blind Optimal Operating Schedule for Reviewing the Energy Load Reduction of Apartment House (공동주택의 에너지 부하량 저감을 위한 블라인드 운영스케줄 검토)

  • Ma, Jun-ChaO;Lee, Jun-Gi;Kim, Sung-Hoon;Lee, Gab-Taek;Lee, Kyung-Hee
    • Journal of Power System Engineering
    • /
    • v.20 no.4
    • /
    • pp.63-68
    • /
    • 2016
  • In this study, through portion of the blind control which the user can adjust the deration and the main loads, night for energy reduction during the review of the energy difference between the cooling and heating load periods in order to present the best operation schedules of the blind control. The result, Cooling period, the venetian blind is installed the day or the day and night CASE adjusted to $0^{\circ}$ was identified as optimal for the operating schedule. Heating period, the day, without installed the blinds, the Venetian blind is installed only at night CASE adjusted to $0^{\circ}$ or $45^{\circ}$ angle of the slats, which have been identified as optimal for the operating schedule.

Performance Analysis of Combined Passive Solar System for Building South Wall (남측외벽에 적용한 혼합형 태양열시스템의 성능 분석)

  • Yun, Tae-Gyun;Lee, Hyun-Soo;Jang, Hyang-In;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.42-49
    • /
    • 2012
  • In this article, the author carried out a theoretical study on the application techniques of a new Combined Passive Solar System (hereinafter referred to as the CPSS) of direct gain and trombe walls to get quick morning heating and to prevent afternoon overheating for office building. The numerical model proposed in this study can be used for the performance analysis of the CPSS in the winter and summer. Heating and Cooling loads are analysed for building energy consumption reduction using this numerical model. The results indicate that CPSS in the winter and summer modes could provide profitable conditions for improvement of indoor thermal comfort control and energy saving. consequently, the application of CPSS will not lead to significant reductions in the auxiliary air conditioning demand but also realize the environmentally friendly building.

Optimized slat angle control algorithm prediction of venetian blind depending on window orientation for energy saving (건물에너지 저감을 위한 향별 슬랫형 블라인드의 최적각도 제어 알고리즘 산출)

  • Kwon, Hyuk-Ju;Lee, Keum-Ho;Lee, Kwang
    • KIEAE Journal
    • /
    • v.17 no.3
    • /
    • pp.99-106
    • /
    • 2017
  • Purpose: Most modern office buildings adopt the curtain wall system in order to provide occupants with the sense of openness and high-technology, which requires large window area. As a result, the amount of solar radiation increases, negatively affecting cooling load during the summer and increasing energy costs. However, the performance of window itself is not sufficiently controllable parameter to control thermal comfort and solar radiation. Therefore, a shading device such as venetian blind is required to control them and thus a variety of studies have been performed thus far. So, the purpose of this study is to improve the performance of blind through the development of blind control algorithm. Method: Among various input variables for the control of venetian blinds, the vertical solar radiation has been selected in this study as the primary input variable and the optimal control algorithm for venetian blinds were developed for each window orientation. Result: The developed optimal control algorithm has a positive effect on building energy savings.

Study on Flow Characteristics in an Augmentation Channel of a Direct Drive Turbine for Wave Energy Conversion Using CFD

  • Prasad, Deepak;Kim, Chang-Goo;Choi, Young-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.594-599
    • /
    • 2009
  • Recent developments such as concern over global warming, depletion of fossil fuels and increase in energy demands by the increasing world population has eventually lead to mass production of electricity using renewable sources. Apart from wind and solar, ocean holds tremendous amount of untapped energy in forms such as geothermal vents, tides and waves. The current study looks at generating power using waves and the focus is on the primary energy conversion (first stage conversion) of incoming waves for different models. Observation of flow characteristics and the velocity in the augmentation channel as well as the front guide nozzle are presented in the paper. A numerical wave tank was used to simulate the waves and after obtaining the desired wave properties; the augmentation channel plus the front guide nozzle and rear chamber were integrated to the numerical wave tank. The waves in the numerical wave tank were generated by a piston type wave maker which was located at the wave tank inlet. The inlet which was modeled as a plate wall moved sinusoidally with the general function, x=asin$\omega$t The augmentation channel consisted of a front nozzle, rear nozzle and an internal fluid region representing the turbine housing. The analysis was performed using the commercial CFD code ANSYS-CFX.

  • PDF

Trophic Structure and Energy Flow of a Pond Ecosystem (연못 생태계의 영양구조와 에너지 유전)

  • 정연숙
    • Journal of Plant Biology
    • /
    • v.25 no.3
    • /
    • pp.123-133
    • /
    • 1982
  • The tropic structure and the function of a small pone ecosystem under the tree stand were studied in terms of energy flow. About 28% of total solar radiation was intercepted by the tree canopy over the pond. Primary producers converted 1.1%(3,382 kcal$\cdot$$m^{-2}$$\cdot$$y^{-1}$) of solar radiation (320,000 kcal$\cdot$$m^{-2}$$\cdot$$y^{-1}$) into gross primary production. The amount of energy availble to the pond snail was 1,683 kcal.m-2.y-1 of the net production by primary producers and 1,033 kcal$\cdot$$m^{-2}$$\cdot$$y^{-1}$ of the litter fallen into the pond. The amount of gross secondary production by the pond snail was 245 kcal$\cdot$$m^{-2}$$\cdot$$y^{-1}$. Judging from these, supply of both net primary production and the litter was indispensable for the maintenance of the pond ecosystem. The total amont of energy as gross primary production plus litter was 4,415 kcal$\cdot$$m^{-2}$$\cdot$$y^{-1}$(100%). Since the total respiration loss was calculated to be 1,917 kcal$\cdot$$m^{-2}$$\cdot$$y^{-1}$(43.4%), the rate of energy accumulation in the pond estimated to 56.6%.

  • PDF

Evaluating the Feasibility of a Ground Source Heat pump System for an Elderly Care Center through Simulation Approach (시뮬레이션을 통한 노인 요양 시설의 지열 히트펌프 시스템 적용 가능성 평가)

  • Byonghu Sohn;Young-Sun Kim;Seung-Eon Lee
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.4
    • /
    • pp.39-52
    • /
    • 2023
  • This study analyzes the energy performance of a elderly care center building and the applicability of a ground source heat pump (GSHP) system through simulation approach. For this purpose, a building information modeling (BIM) program and an energy performance calculation program were used. The impact of the mechanical ventilation system on the energy requirements of the heating and cooling system and the indoor environment was also analyzed, focusing on the change in indoor carbon dioxide (CO2) concentration, which is a representative indicator of the indoor environment (air quality). The simulation results showed that the target building exceeds Level 7 in terms of simulated primary energy consumption or actual energy consumption. In addition, it was analyzed that the target building could not maintain the indoor CO2 concentration below the standard concentration by natural ventilation through window opening alone. Combining the GSHP system with the mechanical ventilation system (Case B and Case C) can further reduce the overall energy consumption by reducing the amount of outdoor air introduced by opening windows. The cost savings compared to the baseline case are estimated to be 67.3% for Case A, 63.7% for Case B, 65.5% for Case C, and 42.5% for Case D. It is necessary to analyze the impact of various renewable energy technologies and passive ones on the energy performance and indoor environment of elderly care centers.

BUILDING INFORMATION MODELING (BIM)-BASED DESIGN OF ENERGY EFFICIENT BUILDINGS

  • Cho, Chung-Suk;Chen, Don;Woo, Sungkwon
    • Journal of KIBIM
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • With the increased awareness of energy consumption as well as the environmental impact of building operations, architects, designers and planners are required to place more consideration on sustainability and energy performance of the building. To ensure most of those considerations are reflected in the building performance, critical design decisions should be made by key stakeholders early during the design development stage. The application of BIM during building energy simulations has profoundly improved the energy analysis process and thus this approach has gained momentum. However, despite rapid advances in BIM-based processes, the question still remains how ordinary building stakeholders can perform energy performance analysis, which has previously been conducted predominantly by professionals, to maximize energy efficient building performance. To address this issue, we identified two leading building performance analysis software programs, Energy Plus and IES (IES ), and compared their effectiveness and suitability as BIM-based energy simulation tools. To facilitate this study, we examined a case study on Building Performance Model (BPM) of a single story building with one door, multiple windows on each wall, a slab and a roof. We focused particularly on building energy performance by differing building orientation and window sizes and compared how effectively these two software programs analyzed the performance. We also looked at typical decision-making processes implementing building energy simulation program during the early design stages in the U.S. Finally, conclusions were drawn as to how to conduct BIM-based building energy performance evaluations more efficiently. Suggestions for further avenues of research are also made.

Study of Energy Cost for Performing Flush-out in Newly Constructed Multi-residential Buildings during Winter Season (겨울철 신축 공동주택의 플러쉬아웃 시행 시 난방비용에 관한 연구)

  • Lee, Ki Yong;Kim, Kee Han;Park, Jun-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.3
    • /
    • pp.110-114
    • /
    • 2016
  • Newly constructed multi-residential buildings with more than 500 households should be flushed out indoor contaminants using a mechanical ventilation system or large fans after the completion of construction and prior to occupancy by the Heath-friendly Housing Construction Standards since 2014. In addition, the standard recommends to maintain indoor temperature over $16^{\circ}C$ and relative humidity below 60% while performing the flush-out. However, it is difficult to maintain these recommended indoor conditions, especially during winter season because additional energy cost is needed for space heating. Therefore, in this study, additional energy cost including heating and ventilation energy cost in multi-residential household for flush-out during winter season was estimated using building energy simulation program called EnergyPlus. Additional energy cost according to various conditions for performing flush-out (such as performance period, ventilation rate, and heating set-point temperature) was analyzed. Based on the results of the energy simulation, the energy cost was estimated to be ranged from 14,625 to 29,452\/household in Incheon city and from 3,521 to 26,268\/household in Gwangju City. There was no significant change in energy cost according to the performing terms of flush-out between Incheon and Gwangju City.

Proteomic Response of Alfalfa Subjected to Aluminum (Al) Stress at Low pH Soil

  • Rahman, Md. Atikur;Kim, Yong-Goo;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.4
    • /
    • pp.262-268
    • /
    • 2014
  • In order to reveal the aluminum (Al) stress tolerance mechanisms in alfalfa plant at low pH soil, a proteomic approach has been conducted. Alfalfa plants were exposed to Al stress for 5 days. The plant growth and total chlorophyll content are greatly affected by Al stress. The malondialdehyde (MDA) and $H_2O_2$ contents were increased in a low amount but free proline and soluble sugar contents, and the DPPH-radical scavenging activity were highly increased. These results indicate that antioxidant activity (DPPH activity) and osmoprotectants (proline and sugar) may involve in ROS ($H_2O_2$) homeostasis under Al stress. In proteomic analysis, over 500 protein spots were detected by 2-dimentional gel electrophoresis analysis. Total 17 Al stress-induced proteins were identified, of which 8 protein spots were up-regulated and 9 were down-regulated. The differential expression patterns of protein spots were selected and analyzed by the peptide mass fingerprinting (PMF) using MALDI-TOF MS analysis. Three protein spots corresponding to Rubisco were significantly down-regulated whereas peroxiredoxin and glutamine synthetase were up-regulated in response to Al stress. The different regulation patterns of identified proteins were involved in energy metabolism and antioxidant / ROS detoxification during Al stress in alfalfa. Taken together, these results provide new insight to understand the molecular mechanisms of alfalfa plant in terms of Al stress tolerance.

Cassava Chips and Ground Corn as Sources of Total Non-Fiber Carbohydrates in Total Mixed Rations for Dairy Cows

  • Kanjanapruthipong, J.;Buatoug, N.;Kanto, U.;Juttupornpong, S.;Chaw-uthai, W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.2
    • /
    • pp.206-210
    • /
    • 2001
  • Six Holstein$\times$indigenous multiparous dairy cows, $60{\pm}8$ days in milk, were used in a double $3{\times}3$ Latin square design to investigate the efficiency of milk production. The dairy cows were randomly allocated to total mixed rations (TMR) containing ground corn, ground corn plus cassava chips 50:50 and cassava chips as main sources of total non-fiber carbohydrates. Ether extract and calculated energy intakes for dairy cows fed TMR containing cassava chips were lower (p<0.05) than those fed TMR containing ground corn and ground corn plus cassava chips 50:50. There were no differences (p>0.05) in daily DM intake (3.51, 3.41 and 3.29% BW), in 4% fat corrected milk (19.66, 20.59 and 20.23%), in milk protein (3.37, 3.27 and 3.33%), and in solids-not-fat (9.03, 8.90 and 8.99%) but there were differences in cost of diets per kg of 4% fat corrected milk (40.75, 34.33 and 28.17%; p<0.01) for dairy cows fed TMR containing ground corn, ground corn plus cassava chips 50:50, and cassava chips. It can be concluded that the efficiency of milk production (4% fat corrected milk per dry matter intake) for dairy cows fed TMR containing cassava was greater than for those fed TMR containing corn.