• Title/Summary/Keyword: Energy plant

Search Result 3,893, Processing Time 0.029 seconds

Cost savings for paper machines with automation solution packages (초지기 자동화 해법에 의한 운전비용 절감대책)

  • Sorsa, Jukka
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2007.05a
    • /
    • pp.83-125
    • /
    • 2007
  • Increasing energy costs have caused profitability problems for paper suppliers. Therefore unprofitable lines are being closed down. The actions aiming for improved profits are focused either on cost savings or on increasing the capacity of the remaining machines. The runnability of a paper machine and its total efficiency have a significant effect on energy consumption. Producing one ton of waste paper consumes at least as much energy as producing the same amount of sellable end product. New automation solutions enable significant cost-effective improvements to the total efficiency of a line without large investment projects. The measures focus on minimizing changes, interruptions, interruption recovery times and grade change times. Newest actuators, online quality measurements and wet end analysators create an improvement potential, which can be optimally implemented with the latest machine direction control solutions, based on model predictive control concepts. Equally, drying management is significant to the energy consumption. The newest control strategies optimize the use of various drying actuators for different situations; either by responding to changes as efficiently as possible or by using only the cheapest energy sources in stable situations. An even steam supply, which is vital for paper machines, is achieved with control for the power plant steam network. This makes possible to avoid the delays upon starting the paper machine and assure an even steam supply for the drying section and the actuators. This document describes means which have brought significant energy and raw material savings for paper machines. Metso Automation has provided efficiency improvement packages, which are usually based on optimized control of dry weight and drying in all running conditions. The solutions are based on performance analysis, on which the estimations for improvement potential and the necessary actions are based on. Typically benefits on an annual level have been from hundreds of thousands of euros to over one million euro. For example, variations in dry weight have been decreased more than 50%. The results are presented with a few examples. Additionally, the analysis models, adjustment solutions and the changes in running methods with which the results were achieved, are presented.

  • PDF

CFD Analysis for Steam Jet Impingement Evaluation (증기제트 충돌하중 평가를 위한 CFD 해석)

  • Choi, Choengryul;Oh, Se-Hong;Choi, Dae Kyung;Kim, Won Tae;Chang, Yoon-Suk;Kim, Seung Hyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.2
    • /
    • pp.58-65
    • /
    • 2016
  • Since, in case of high energy piping, steam jets ejected from the rupture zone may cause damage to nearby structure, it is necessary to design it into consideration of nuclear power plant design. For the existing nuclear power plants, the ANSI / ANS 58.2 technical standard for high-energy pipe rupture was used. However, the US Nuclear Regulatory Commission (USNRC) and academia recently have pointed out the non-conservativeness of existing high energy pipe fracture evaluation methods. Therefore, it is necessary to develop a highly reliable evaluation methodology to evaluate the behavior of steam jet ejected during high energy pipe rupture and the effect of steam jet on peripheral devices and structures. In this study, we develop a method for analyzing the impact load of a jet by high energy pipe rupture, and plan to carry out an experiment to verify the evaluation methodology. In this paper, the basic data required for the design of the jet impact load experiment equipment under construction, 1) the load change according to the jet distance, 2) the load change according to the jet collision angle, 3) the load variation according to structure diameter, and 4) the load variation depending on the jet impact position, are numerically obtained using the developed steam jet analysis technique.

Bio-Denitrification of the Nitrate Waste Solution from the Lagoon Sludge in a Batch Fermenter (회분식 발효조에서 미생물을 이용한 라군 슬러지 질산염 폐액의 탈질 공정 평가)

  • Oh Jong-Hyeok;Lee O-Mi;Hwang Doo-Seong;Choi Yun-Dong;Hwang Sung-Tae;Jo Byung-Real;Park Jin-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.153-159
    • /
    • 2006
  • It is a serious task to the decommissioning of the uranium conversion plant that the demolition of the lagoon sludge. The main component of the sludge is ammonium nitrate and that is the very explosive material. Therefore, the bio-denitrification is a attractive process to remove the nitrate. In this work, some process variables was tested such as incubation temperature, nitrate concentration, electron donor, C/N ratio, seeding ratio, and pH with an anaerobic bacteria as Pseudomonas halodenitrificans. The results would be used as basic data to the continuous bio-denitrification process.

  • PDF

Nutritional Status of the Long-lived Elderly People in Kyungpook Sung-Ju Area(I) -Estimation of Nutrients Intakes- (경북 성주지역 장수노인의 영양상태(I) -영양섭취상태-)

  • 이혜성
    • Journal of Nutrition and Health
    • /
    • v.33 no.4
    • /
    • pp.438-453
    • /
    • 2000
  • The purposes of this study were to estimate nutritional intakes of the long-lived elderly and to obtain the data for establishing dietary guidelines that may be recommended for the general population for the sake of longevity. The subjects of the study were 300 elederly people of age over 85 years living in Kyungpook Sung-Ju area who had no problem in daily living. Four times of food consumption survey were carried out seasonally by the repeated 24-hr recall method for one year. Mean daily energy intakes and RDA percentage of energy intakes of the male and female subjects were estimated as 1222 kcal(67.9%) and 1047 kcal(65.4%) respectively. Mean daily intakes of nutrients were estimated as 38.3g for protein, 287mg for calcium, 5.8mg for iron, 314R.E. for vitamin A, 0.6mg for vitamin B1 and 0.43mg for vitamin B2 The mean RDA percentages of nutrients intake were 64.4% and 59.8% for protein in male and female, 39.8% for Ca, 48.3% for Fe, 44.9% for vitamin A, 60% for vitamin B1, and 35.8% for B2. The average PFC ratio of energy-yielding nutrients throughout the year in male and female were 15.1 : 15.2 : 69.7 and 13.8 : 13.2 : 73.0 respectively. The mean daily intakes of energy and most of nutreints were significantly high in winter season. The contribution of plant food sources to nutrient intakes were over 60% for protein and fat, 50% for calcium, and 70% for iron. Long-lived elderly people an Sung-Ju, Kyungpook showed considerably smaller physiques compared to the avergae Korean elderly, however their average BMI fell in normal range. The subjects were consuming much less energy and nutrients compared to the present Korean RDA for the elderly over age 75. The subject showed relatively good health state in spite of low intakes of energy and nutrients. Therefore it seems to be necessary to establish a set of new RDA for the elderly over age 8.5.

  • PDF

Research on Improvement of Efficiency in Flat Plate Solar Collector by Using Double-Wall Glazing and VIP Insulation (이중투과체 및 VIP복합 단열재 적용 평판 집열기의 성능 향상에 대한 연구)

  • Lee, Doo Ho;Jang, Han Bin;Kim, Young Hak;Do, Kyu Hyung;Lee, Kwang Seob;Lyu, Nam Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.11
    • /
    • pp.458-465
    • /
    • 2016
  • The purpose of this research is to improve the thermal effiency of solar collector and to quantitatively analyze its performance. Solar thermal systems have been limited to water heating systems mainly using low-temperature range. However, through diverse developments, the application has been extended to medium- and high-temperature fields such as solar heating, solar air conditioning, and solar thermal industrial process. Among the diverse research, this research is specially focusing on enhancement of the thermal performance by minimizing the heat loss coefficient of flat plate solar collectors. In order to do it, a front-side glazing material and a back-side insulation material with high insulated structure is proposed and based on computational analysis, the performance of energy collecting volume of the proposed solar collector is analyzed. The research shows that the proposed structure has the excellent performance at medium- and high-temperature range. therefore, it is expected that the proposed structure can easily replace existing technologies.

A Study on Technical Criteria of the Transport Vessel for Radioactive Wastes (방사성폐기물 수송선박의 기술기준 분석)

  • Lee, Heung-Young;Chung, Sung-Hwan;Park, Yoon-Gyu;Yoon, Suk-Joong;Nam, Jang-Soo
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.4
    • /
    • pp.285-296
    • /
    • 1995
  • The site of Korea Final Repository, KFR, to collect and dispose of radioactive wastes produced in nuclear power plants will be selected to seaside. As all the radwastes stored temporarily in the site of power plants should be transported by the sea, Nuclear Environmental Management Center, NEMAC, of Korea Atomic Energy Research Institute, KAERI, has been developing the sea transport system to secure safe and efficient transportation of the radwastes from the power plant sites to the final repository. Investigating the status of advanced techniques of foreign countries for transport vessels and considering inland circumstances, the technical criteria of the transport vessel have been suggested in this study. Therefore, all the radwastes will be transported safely by the sea, without releasing any radioactive material to environment even in the case of accident.

  • PDF

Energy Recovery via Pyrolysis of Waste Tire Rubber : Desulfurization Effect of Pyrolysis Oil by Adding Waste Polypropylene (폐타이어의 열분해를 통한 에너지화 : 폐폴리프로필렌 첨가 시 열분해 오일의 탈황 효과)

  • Jeong, Jaeyong;Lee, Uendo;Chang, Wonseok;Oh, Munsei;Jeong, Soohwa
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.97-104
    • /
    • 2017
  • In this study, waste tire rubbers were pyrolyzed in a lab-scale pyrolysis plant equipped with a fluidized bed reactor in a temperature ranges of $450-650^{\circ}C$. The main object of this work is to investigate the properties of pyrolysis oil with reaction temperatures and the behavior of sulfur in the products when waste polypropylene was added for co-pyrolysis. The maximum yield of oil was about 52wt.% at the reaction temperature of $456^{\circ}C$. From GC-MS analysis, the pyrolysis oils consisted mainly of limonene, toluene, xylene, styrene, trimethylbenzene, methylnaphthalenes and some heteroatom(sulfur and nitrogen)-containing compounds. The addition of waste polypropylene resulted in decrease in sulfur contents of the pyrolysis oils.

AN ANALYSIS OF TECHNICAL SECURITY CONTROL REQUIREMENTS FOR DIGITAL I&C SYSTEMS IN NUCLEAR POWER PLANTS

  • Song, Jae-Gu;Lee, Jung-Woon;Park, Gee-Yong;Kwon, Kee-Choon;Lee, Dong-Young;Lee, Cheol-Kwon
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.637-652
    • /
    • 2013
  • Instrumentation and control systems in nuclear power plants have been digitalized for the purpose of maintenance and precise operation. This digitalization, however, brings out issues related to cyber security. In the most recent past, international standard organizations, regulatory institutes, and research institutes have performed a number of studies addressing these systems cyber security.. In order to provide information helpful to the system designers in their application of cyber security for the systems, this paper presents methods and considerations to define attack vectors in a target system, to review and select the requirements in the Regulatory Guide 5.71, and to integrate the results to identify applicable technical security control requirements. In this study, attack vectors are analyzed through the vulnerability analyses and penetration tests with a simplified safety system, and the elements of critical digital assets acting as attack vectors are identified. Among the security control requirements listed in Appendices B and C to Regulatory Guide 5.71, those that should be implemented into the systems are selected and classified in groups of technical security control requirements using the results of the attack vector analysis. For the attack vector elements of critical digital assets, all the technical security control requirements are evaluated to determine whether they are applicable and effective, and considerations in this evaluation are also discussed. The technical security control requirements in three important categories of access control, monitoring and logging, and encryption are derived and grouped according to the elements of attack vectors as results for the sample safety system.

Development of an Accident Consequence Assessment Code for Evaluating Site Suitability of Light- and Heavy-water Reactors Based on the Korean Technical Standards

  • Hwang, Won Tae;Jeong, Hae Sun;Jeong, Hyo Joon;Kil, A Reum;Kim, Eun Han;Han, Moon Hee
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.368-372
    • /
    • 2016
  • Background: Methodologies for a series of radiological consequence assessments show a distinctive difference according to the design principles of the original nuclear suppliers and their technical standards to be imposed. This is due to the uncertainties of the accidental source term, radionuclide behavior in the environment, and subsequent radiological dose. Both types of PWR and PHWR are operated in Korea. However, technical standards for evaluating atmospheric dispersion have been enacted based on the U.S. NRC's positions regardless of the reactor types. For this reason, it might cause a controversy between the licensor and licensee of a nuclear power plant. Materials and Methods: It was modelled under the framework of the NRC Regulatory Guide 1.145 for light-water reactors, reflecting the features of heavy-water reactors as specified in the Canadian National Standard and the modelling features in MACCS2, such as atmospheric diffusion coefficient, ground deposition, surface roughness, radioactive plume depletion, and exposure from ground deposition. Results and Discussion: An integrated accident consequence assessment code, ACCESS (Accident Consequence Assessment Code for Evaluating Site Suitability), was developed by taking into account the unique regulatory positions for reactor types under the framework of the current Korean technical standards. Field tracer experiments and hand calculations have been carried out for validation and verification of the models. Conclusion: The modelling approaches of ACCESS and its features are introduced, and its applicative results for a hypothetical accidental scenario are comprehensively discussed. In an applicative study, the predicted results by the light-water reactor assessment model were higher than those by other models in terms of total doses.

Energy Consumption of Biodiesel Production Process by Supercritical and Immobilized Lipase Method (초임계와 Lipase 고정화에 의한 바이오디젤 생산 공정의 에너지소비량)

  • Min, Eung-Jae;Lee, Euy-Soo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.257-263
    • /
    • 2012
  • Biodiesel is a renewable energy which is nontoxic and acting as a replacement for conventional diesel which derived from fossil fuel. Classified biodiesel producing way such as acid, base, supercritical and enzyme methods, this study focused on eco-friendly production of biodiesel using supercritical and immobilized enzyme process. Assuming a plant with a production rate of 10,000 tons a year, a PRO II simulator program was used to simulate the product conversion rate and total energy consumption. The product conversion in supercritical process and immobilized enzyme was found to be 91.17% (including 0.9% glycerol) and 93.18% (including 1.0% glycerol) respectively. The result shows that the efficiency of immobilized enzyme process is higher compared to supercritical process but having lower end product purity. From the energy consumption point of view, supercritical process consume about 8.9 MW while immobilized enzyme process consume much lower energy which is 3.9 MW. Consequently, this study certifies that energy consumption of supercritical process is 2.3 times higher than immobilized enzyme process.