• 제목/요약/키워드: Energy plant

Search Result 3,892, Processing Time 0.039 seconds

Global technologies for the removal of water scaling & water recovery - Department of Energy (DOE) USA

  • Ramakrishna, Chilakala;Thriveni, Thenepalli;Whan, Ahn Ji
    • Journal of Energy Engineering
    • /
    • v.27 no.1
    • /
    • pp.21-32
    • /
    • 2018
  • In this paper, we reported the current technologies of water scaling removal and also water recovery from the flue gases, which are funded by Department of Energy (DOE), USA. Globally, water resources are limited due to the climate change. The potential impacts of climate change is food and water shortages. In the $21^{st}$ century, water shortages and pollution are expected to become more acute as populations grow and concentrate in cities. At present, the water stress increases over 62.0 ~ 75.8% of total water basin area and decreases over 19.7 ~ 29.0%. Many renewable energy sources demand secure water resources. Water is critical for successful climate change mitigation, as many efforts to reduce greenhouse gas emissions depend on reliable access to water resources. Water hardness is one of the major challenge to coal power plants. Department of energy (DOE) funded and encouraged for the development of advanced technologies for the removal of hardness of water (scaling) and also water recovery from the flue gases from coal power plants.

Evaluation of the Wind Power Penetration Limit and Wind Energy Penetration in the Mongolian Central Power System

  • Ulam-Orgil, Ch.;Lee, Hye-Won;Kang, Yong-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.852-858
    • /
    • 2012
  • This paper describes evaluation results of the wind power penetration limit (WPPL) and the wind energy penetration (WEP) in the Mongolian central power system (MCPS). A wind power plant (WPP) in a power system possesses an output power limit because the power system must maintain a balance between the generation and consumption of electricity at all times in order to achieve an adequate level of quality. The instantaneous penetration limit (IPL) of wind generation at a load is determined as the minimum of the three technical constraints: the minimum output, the ramp rate capability, and the spinning reserve of the conventional generating units. In this paper, a WPPL is defined as the maximum IPL divided by the peak load. A maximal variation rate (VR) of wind power is a major factor in determining the IPL, WPPL, and WEP. This paper analyzes the effects of the maximal VR of wind power on the WPPL, WEP, and capacity factor (CF) in the MCPS. The results indicate that a small VR can facilitate a large amount of wind energy while maintaining a high CF with increased wind power penetration.

Biomass Energy in the USA: A Literature Review (II) - Marketing and Policies for Green Power Production with Environmental Attributes - (미국 에너지 시장에 공급되는 바이오에너지에 관한 연구(II) - 환경친화적 녹색전기의 마케팅 및 정부지원책에 대하여 -)

  • Kim, Yeong-Suk;Gorman, Thomas
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.1 s.129
    • /
    • pp.97-110
    • /
    • 2005
  • This paper is the second part of a literature review describing the current status of biomass energy use in the USA. The bioenergy technologies that convert biomass resources to a form of energy were presented, in particular focused on existing coal fired boiler, high efficiency gasification combined cycle. We presented latest biomass power energy supply, economic issues such as its production and plant investment cost in the Part I. In the Part II, our review summarized policy and market issues for electricity consumers, benefits from biomass power which could offer an alternative to conventional energy sources in the form of environmental, rural economic growth, and national energy security in the USA.

Sentiment analysis of nuclear energy-related articles and their comments on a portal site in Rep. of Korea in 2010-2019

  • Jeong, So Yun;Kim, Jae Wook;Kim, Young Seo;Joo, Han Young;Moon, Joo Hyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.1013-1019
    • /
    • 2021
  • This paper reviewed the temporal changes in the public opinions on nuclear energy in Korea with a big data analysis of nuclear energy-related articles and their comments posted on the portal site NAVER. All articles that included at least one of "nuclear energy," "nuclear power plant (NPP)," "nuclear power phase-out," or "anti-nuclear" in their titles or main text were extracted from those posted on NAVER in January 2010-December 2019. First, we performed annual word frequency analysis to identify what words had appeared most frequently in the articles. For that period, the most frequent words were "NPP," "nuclear energy," and "energy." In addition, "safety" has remained in the upper ranks since the Fukushima NPP accident. Then, we performed sentiment analysis of the pre-processed articles. The sentiment analysis showed that positive-tone articles have been reported more frequently than negativetone over the entire analysis period. Last, we performed sentiment analysis of the comments on the articles to examine the public's intention regarding nuclear issues. The analysis showed that the number of negative comments to articles each month-irrespective of positive or negative tone-was always larger than that of positive comments over the entire analysis period.

A Study on the Independent Operation and Connected Operation of Microgrid (마이크로그리드의 독립운영 및 연계운영에 관한 연구)

  • Oh, Hyun-Ju;Park, Sung-Jun;Park, Seong-Mi;Kim, Chun-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1199-1206
    • /
    • 2022
  • Fossil fuels are one of the various energy sources used by humans, and industrial development has been achieved by relying on fossil fuels for a long time in the past. In order to respond to the depletion of fossil fuels and climate change, the world is trying to build an eco-friendly energy ecosystem. Research on efficiency improvement using renewable energy and ESS in various ways for energy conversion is being promoted. In this paper, a microgrid for industrial complexes was designed, constructed, and demonstrated. It was operated in two modes: an independent mode that each plant generates and uses independently and a connected operation mode that allows energy sharing between factories. In the case of independent mode, PV and PCS were intermittently stopped and restarted according to the status change of SoC section of each site. But, in the case of the connected operation mode, stable power supply was confirmed through power transaction through the operation of the entire SoC. This paper presented and verified an algorithm to stably supply power to industrial complexes consisting of various consumers with different load characteristics.

Studies on The Molecular Mechanism of 33 kDa extrinsic Protein in Photosystem II Oxygen-Evolving Complex

  • Xu, Chunhe;Ruan, Kangcheng;Yu, Yong;Weng, Jun
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.82-85
    • /
    • 2002
  • 33kDa extrinsic protein, an important protein in oxygenic photosynthesis, was known to have no fixed configuration in solution. At 20$\^{C}$ and pH 6, 33kDa extrinsic protein showed changes of free energy of -14.6 kJ/mor$\^$-1/ and of standard volume of -120mL/mol, respectively, with increase of hydrostatic pressure, comparatively lower than for most proteins. NBS modification of Trp241 in 33kDa extrinsic protein dramatically changes the secondary protein structure, its affinity to photosystem II as well as photosynthetic oxygen evolution. The relationship between structural change and transport of oxygen, water and proton is deserved a further study.

  • PDF

Steady and Dynamic Modeling of 3MW MCFC System Conceptual Design Using Parameter Interpolation Method (파라미터 보간법을 이용한 3MW급 MCFC 시스템의 정상 및 비정상 상태 설계)

  • Kim, Minki;Cho, Yinjung;Kim, Yunmi;Kang, Minkwan;Lee, Sanghoon;Kim, Jaesig
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.87.2-87.2
    • /
    • 2010
  • The steady and dynamic process model for an internal reforming molten carbonate fuel cell power plant is discussed in this paper. The dominant thermal and chemical dynamic processes are modeled for the stack module and balance-of-plant, including cathode gas preparation, heat recovery, heat loss (Each heat loss amount for the stack and MBOP is obtained from real plant data) and fuel processing. Based on dynamic model and control demand, PID controllers are designed in the whole system. By applying these controllers we can obtain temperature balance of stack and control system depending on changing steam to carbon ratio, air feed amount, and transient condition.

  • PDF

QUALIFICATION, CONDITION MONITORING, AND MANAGEMENT OF AGEING OF LOW VOLTAGE CABLES IN NUCLEAR POWER PLANT (Global Today - 원자력발전소 저전압 케이블의 노화에 대한 적격, 상태 모니터링 및 관리 (1))

  • Kang, Ki Sig
    • JOURNAL OF ELECTRICAL WORLD
    • /
    • s.451
    • /
    • pp.46-58
    • /
    • 2014
  • At the end of 2013, there were 434 nuclear power reactors in operation worldwide, with a total capacity of 371.6 GW(e), approximately 80 % had been in service 20 years and more. Many Member States have given high priority to licensing their nuclear power plants to operate for terms longer than the time frame originally anticipated(e.g. 30 or 40 years). One of challenges for long term operation is cable ageing management. How can qualify the existing cable under harsh environment in nuclear power plant? The paper described the approaches on qualification, condition monitoring, and management of low voltage cables in nuclear power plant.

  • PDF

Application of Dynamic Model for Steam Turbine and its Parameter Estimation in a Fossil Fired Power Plant

  • Choi, Inkyu;Woo, Joohee;Kim, Byoungchul;Son, Gihun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.409-413
    • /
    • 2016
  • The 500 MW rated steam turbine model in coal fired power plant is developed to be used for validation and verification of controller rather than for the education of operator. The valve, steam turbine, reheater and generator are modeled and integrated into the simulator. And the data from the plant heat balance diagram are used for estimation of the model parameters together with actual operating data. It is found that the outputs of model such as pressure, temperature and speed are similar to the operating ones. So, it is expected that the developed model will play a very big role in controller development.

Detecting Fault of Solar Plant using Drone (드론을 이용한 태양광 발전소 고장 점검)

  • Kim, Dong-Gyun;Park, Kwan-nam;Cho, Sang-Yoon;Lee, Young-Kwoun;Yu, Gwon-Jong;Jeong, Mun-Ho;Choy, Ick;Choi, Ju-Yeop
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.471-472
    • /
    • 2016
  • Since photovoltaic generating system is significantly important among renewable energy sources, photovoltaic plants are installed more than past. As a result, accidents of photovoltaic system are also increased, so the additional hardware which includes monitoring system and periodic inspection are required for safety. In addition, a photovoltaic system is installed where a person can't approach to detect a fault, so a number of devices are required to detect it. This paper proposes that drone and thermo-graphic camera are used for detecting a fault of photovoltaic plant and suggests efficiency to control a drone for detecting a photovoltaic plant.

  • PDF