• Title/Summary/Keyword: Energy modulation

Search Result 475, Processing Time 0.029 seconds

Differences in liver microRNA profiling in pigs with low and high feed efficiency

  • Miao, Yuanxin;Fu, Chuanke;Liao, Mingxing;Fang, Fang
    • Journal of Animal Science and Technology
    • /
    • v.64 no.2
    • /
    • pp.312-329
    • /
    • 2022
  • Feed cost is the main factor affecting the economic benefits of pig industry. Improving the feed efficiency (FE) can reduce the feed cost and improve the economic benefits of pig breeding enterprises. Liver is a complex metabolic organ which affects the distribution of nutrients and regulates the efficiency of energy conversion from nutrients to muscle or fat, thereby affecting feed efficiency. MicroRNAs (miRNAs) are small non-coding RNAs that can regulate feed efficiency through the modulation of gene expression at the post-transcriptional level. In this study, we analyzed miRNA profiling of liver tissues in High-FE and Low-FE pigs for the purpose of identifying key miRNAs related to feed efficiency. A total 212~221 annotated porcine miRNAs and 136~281 novel miRNAs were identified in the pig liver. Among them, 188 annotated miRNAs were co-expressed in High-FE and Low-FE pigs. The 14 miRNAs were significantly differentially expressed (DE) in the livers of high-FE pigs and low-FE pigs, of which 5 were downregulated and 9 were upregulated. Kyoto Encyclopedia of Genes and Genomes analysis of liver DE miRNAs in high-FE pigs and low-FE pigs indicated that the target genes of DE miRNAs were significantly enriched in insulin signaling pathway, Gonadotropin-releasing hormone signaling pathway, and mammalian target of rapamycin signaling pathway. To verify the reliability of sequencing results, 5 DE miRNAs were randomly selected for quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The qRT-PCR results of miRNAs were confirmed to be consistent with sequencing data. DE miRNA data indicated that liver-specific miRNAs synergistically acted with mRNAs to improve feed efficiency. The liver miRNAs expression analysis revealed the metabolic pathways by which the liver miRNAs regulate pig feed efficiency.

The Ingestion of Dietary Prebiotic Alternatives during Lactation Promotes Intestinal Health by Modulation of Gut Microbiota

  • Sangdon Ryu;Jeong Jae Lee;Daye Mun;Soo Rin Kim;Jeehwan Choe;Minho Song;Younghoon Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.11
    • /
    • pp.1454-1461
    • /
    • 2022
  • Palm kernel expeller (PKE), a by-product of palm oil extraction, contains higher amounts of fiber than corn and soybean meal, but offers low energy density, protein value, and amino acid (AA) composition, limiting its use for swine. Recently however, it was reported that dietary fiber has a positive effect on the gut microbiota of the host, and therefore it is necessary to study the effect of PKE feeding on the intestinal microbiota of swine. In this study, we investigated the effects of supplementation with PKE in lactation diets on the gut microbiota composition of lactating sows and their litters. A total of 12 sows were randomly assigned to two dietary treatment groups in a completely randomized design. The treatments were a diet based on corn-soybean meal (CON) and CON supplemented with 20% of PKE. Sow and piglet fecal samples were collected before farrowing, on days 7 and 28 (weaning) after farrowing, and on days 7 and 28 (weaning) after farrowing, respectively, to verify gut microbiota composition by pyrosequencing analysis. The beta-diversity result showed a significant difference only in weaning-stage piglets, but dietary PKE altered the gut microbiota in sows by increasing the abundance of Lactobacillus compared with CON. In piglets, dietary PKE decreased the abundance of opportunistic pathogen Proteus and increased the abundance of potentially beneficial bacteria, such as Prevotellaceae and Prevotella. Our results can be helpful in developing feeding strategies and support the beneficial effects of dietary PKE to improve the gut health of animals.

Longevity, tumor, and physical vitality in rats consuming ginsenoside Rg1

  • Chao-Chieh Hsieh;Chiung-Yun Chang;Tania Xu Yar Lee;Jinfu Wu;Suchada Saovieng;Yu-Wen Hsieh;Maijian Zhu;Chih-Yang Huang;Chia-Hua Kuo
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.210-217
    • /
    • 2023
  • Background: Effects of the major ginsenoside Rg1 on mammalian longevity and physical vitality are rarely reported. Purpose: To examine longevity, tumor, and spontaneous locomotor activity in rats consuming Rg1. Methods: A total of 138 Wistar rats were randomized into 2 groups: control (N = 69) and Rg1 (N = 69). Rg1 (0.1 mg/kg per day) were orally supplemented from 6 months of age until natural death. Spontaneous mobility was measured by video-tracking together with body composition (dual energy x-ray absorptiometry) and inflammation markers at 5, 14, 21, and 28 months of age. Results: No significant differences in longevity (control: 706 days; Rg1: 651 days, p = 0.77) and tumor incidence (control: 19%; Rg1: 12%, p = 0.24) were observed between the two groups. Movement distance in the control group declined significantly by ~60% at 21 months of age, together with decreased TNF-α (p = 0.01) and increased IL-10 (p = 0.02). However, the movement distance in the Rg1 group was maintained ~50% above the control groups (p = 0.01) at 21 months of age with greater magnitudes of TNF-α decreases and IL-10 increases. Glucose, insulin, and body composition (bone, muscle and fat percentages) were similar for both groups during the entire observation period. Conclusion: The results of the study suggest a delay age-dependent decline in physical vitality during late life by lifelong Rg1 consumption. This improvement is associated with inflammatory modulation. Significant effects of Rg1 on longevity and tumorigenesis were not observed.

Performance Analysis of Spiral Axicon Wavefront Coding Imaging System for Laser Protection

  • Haoqi Luo;Yangliang Li;Junyu Zhang;Hao Zhang;Yunlong Wu;Qing Ye
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.355-365
    • /
    • 2024
  • Wavefront coding (WFC) imaging systems can redistribute the energy of an interference laser spot on an image plane sensor by wavefront phase modulation and reduce the peak intensity, realizing laser protection while maintaining imaging functionality by leveraging algorithmic post-processing. In this paper, a spiral axicon WFC imaging system is proposed, and the performance for laser protection is investigated by constructing a laser transmission model. An Airy disk on an image plane sensor is refactored into a symmetrical hollow ring by a spiral axicon phase mask, and the maximum intensity can be reduced to lower than 1% and single-pixel power to 1.2%. The spiral axicon phase mask exhibits strong robustness to the position of the interference laser source and can effectively reduce the risk of sensor damage for an almost arbitrary lase propagation distance. Moreover, we revealed that there is a sensor hazard distance for both conventional and WFC imaging systems where the maximum single-pixel power reaches a peak value under irradiation of a power-fixed laser source. Our findings can offer guidance for the anti-laser reinforcement design of photoelectric imaging systems, thereby enhancing the adaptability of imaging systems in a complex laser environment. The laser blinding-resistant imaging system has potential applications in security monitoring, autonomous driving, and intense-laser-pulse experiments.

Soliton Mode-locking and Numerical Analysis of Yb3+-doped Potassium Double Tungstate Lasers in Compact Laser Cavity Geometries (Yb3+ 도핑된 칼륨 이중 텅스테이트 결정을 이용한 소형 공진기에서의 솔리톤 모드 잠금 레이저 구현 및 수치 해석)

  • Deok Woo Kim;Kwang Hoon Ko;Fabian Rotermund
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.5
    • /
    • pp.241-249
    • /
    • 2024
  • In this study, we demonstrate compact mode-locked laser operations using three different kinds of Yb3+-doped potassium double tungstate laser crystals, Yb:KGdW, Yb:KYW and Yb:KLuW, operating near 1040 nm at a repetition rate of 405 MHz. We utilized a semiconductor saturable absorber mirror as a mode locker, successfully maintaining mode-locked states for several hours without any Q-switching instabilities for all types of laser crystals. Notably, the Yb:KGdW mode-locked laser produces the shortest pulse with a duration of 108 fs, delivering 125 mW of output power. Additionally, we conducted a numerical analysis by solving the Haus master equation, which incorporates the effect of group delay dispersion and self-phase modulation, using the standard split-step Fourier method.

Use of Numerical Simulation for Water Area Observation by Microwave Radar (마이크로웨이브 레이더를 이용한 수역관측에 있어서의 수치 시뮬레이션 이용)

  • Yoshida, Takero;Rheem, Chang-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.208-218
    • /
    • 2012
  • Numerical simulation technique has been developed to calculate microwave backscattering from water surface. The simulation plays a role of a substitute for experiments. Validation of the simulation was shown by comparing with experimental results. Water area observations by microwave radar have been simulated to evaluate algorithms and systems. Furthermore, the simulation can be used to understand microwave scattering mechanism on the water surface. The simulation has applied to the various methods for water area observations, and the utilizations of the simulation are introduced in this paper. In the case of fixed radar, we show following examples, 1. Radar image with a pulse Doppler radar, 2. Effect of microwave irradiation width and 3. River observation (Water level observation). In addition, another application (4.Synthetic aperture radar image) is also described. The details of the applications are as follows. 1. Radar image with a pulse Doppler radar: A new system for the sea surface observation is suggested by the simulation. A pulse Doppler radar is assumed to obtain radar images that display amplitude and frequency modulation of backscattered microwaves. The simulation results show that the radar images of the frequency modulation is useful to measure sea surface waves. 2. Effect of microwave irradiation width: It is reported (Rheem[2008]) that microwave irradiation width on the sea surface affects Doppler spectra measured by a CW (Continuous wave) Doppler radar. Therefore the relation between the microwave irradiation width and the Doppler spectra is evaluated numerically. We have shown the suitable condition for wave height estimation by a Doppler radar. 3. River observation (Water level observation): We have also evaluated algorithms to estimate water current and water level of river. The same algorithms to estimate sea surface current and sea surface level are applied to the river observation. The simulation is conducted to confirm the accuracy of the river observation by using a pulse Doppler radar. 4. Synthetic aperture radar (SAR) image: SAR images are helpful to observe the global sea surface. However, imaging mechanisms are complicated and validation of analytical algorithms by SAR images is quite difficult. In order to deal with the problems, SAR images in oceanic scenes are simulated.

Protective Effects of a Herbal Composition (HemoHIM) Against Apoptosis Induced by Oxidative Stress of Hydrogen Peroxide (과산화수소의 산화적 스트레스로 유도된 Apoptosis에 대한 생약복합조성물(HemoHIM)의 방호효과 평가)

  • Shin, Sung-Hae;Kim, Do-Soon;Kim, Mi-Jung;Kim, Sung-Ho;Jo, Sung-Kee;Byun, Mung-Woo;Yee, Sung-Tae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.9
    • /
    • pp.1127-1132
    • /
    • 2006
  • In our previous study, a novel herb mixture (HIM-I) of Angelica gigas radix, Cnidium officinale rhizoma, and Paeonia japonica radix was developed to protect the intestinal and immune systems and promote its recovery against radiation damage. A new herbal composition (HemoHIM) with the high immune modulating activity was developed from HIM-I. HIM-I was fractionated into ethanol fraction (HIM-I-E) and polysaccharide fraction (HIM-I-P). And HemoHIM was prepared by adding HIM-I-P to HIM-I. HemoHIM showed more effective than HIM-I in immune modulation as well as radioprotection. The present study is designed to investigate the protective effects of HIM-I, HIM-I-P, and HemoHIM on hydrogen peroxide $(H_2O_2)$ induced apoptosis of human promyelocytic leukemia (HL-60) cells. It was shown that $H_2O_2$ treatment reduced the viability of cells, and increased appearance of DNA ladders, hypodiploid (subG1) cells, and phosphatidylserine translocation level. Pretreatment of HemoHIM significantly reduced the cytotoxic effect induced by $H_2O_2$, associated with reducing the translocation of phosphatidylserine, hypodiploid cells and DNA ladders. HemoHIM appeared to be more protective than HIM-I against $H_2O_2$ induced apoptosis whereas, it exhibited similar activity to HIM-I-P. These results indicated that HemoHIM might be an useful agent for protection against oxidative stress $(H_2O_2)-induced$ apoptosis as well as immune modulation, especially since it is a relatively nontoxic natural product.

Neuroprotective Effects of Pinelliae Rhizoma Water-Extract by Suppression of Reactive Oxygen Species and Mitochondrial Membrane Potential Loss in a Hypoxic Model of Cultured Rat Cortical Cells. (배양대뇌신경세포 저산소증모델에서 유해산소생성억제 및 사립체막전위 소실방지에 의한 반하(半夏)의 신경세포사 억제 효능)

  • Kwon, Gun-Rok;Moon, Il-Soo;Lee, Won-Chul
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.598-606
    • /
    • 2009
  • Oxidative stress by free radicals is a major cause of neuronal cell death. Excitotoxicity in hypoxia/ischemia causes an increase in reactive oxygen species (ROS) and a loss of mitochondrial membrane potential (MMP), resulting in dysfunction of the mitochondria and cell death. Pinelliae Rhizoma (PR) is a traditional medicine for incipient stroke. We investigated the effects of PR Water-Extract on the modulation of ROS and MMP in a hypoxic model using cultured rat cortical cells. PR Water-Extract was added to the culture medium at various concentrations (0.25${\sim}$5, 5.0 ${\mu}g/ml$) on day in vitro 12(DIV12), given a hypoxic shock (2% $O_2$/5% $CO_2$, $37^{\circ}C$, 3 hr), and cell viability was assessed on DIV15 by Lactate Dehydrogenase Assay (LDH assays). PR Water-Extract showed a statistically significant effect on neuroprotection (10${\sim}$15% increase in viability; p<0.01) at 1.0 and 2.5 ${\mu}g/ml$ in normoxia and hypoxia. Measurement of ROS production by $H_2DCF-DA$ stainings showed that PR Water-Extract efficiently reduced the number and intensity of ROS-producing neurons, especially at 1 hr post shock and DIV15. When MMP was measured by JC-1 stainings, PR Water-Extract efficiently maintained high-energy charged mitochondria. These results indicate that PR Water-Extract protects neurons in hypoxia by preventing ROS production and preserving the cellular energy level.

The Role of ROS and p38 MAP kinase in Berberine-Induced Apoptosis on Human Hepatoma HepG2 Cells (Berberine에 의한 HepG2 세포의 사멸과정에서 활성기산소와 p38 MAP kinase의 역할에 관한 연구)

  • Hyun, Mee-Sun;Woo, Won-Hong;Hur, Jung-Mu;Kim, Dong-Ho;Mun, Yeun-Ja
    • Applied Biological Chemistry
    • /
    • v.51 no.2
    • /
    • pp.129-135
    • /
    • 2008
  • Berberine is an isoquinoline alkaloid used in traditional Chinese medicine and has been isolated from a variety of plants, such as Coptis chinensis and Phellodendron amurense. It has a wide spectrum of clinical applications such as in anti-tumor, anti-microbial, and anti-inflammatory activities. However, it is still unknown that berberine related with reactive oxygen species (ROS)-mediated apoptosis pathway in human hepatoma HepG2 cells. In the present study, we are examined the molecular mechanism of ROS- and p38 MAP kinase-mediated apoptosis by berberine in HepG2 cells. Berberine increased cytotoxicity effects by time- and does-dependent manner. $LD_{50}$ was detected 50 ${\mu}M$ at 48h of exposure to berberine. Nuclei cleavage and apoptotic DNA fragmentation were observed in cells treated with 50 ${\mu}M$ of berberine for 48h. Moreover, berberine induced the activating of caspase-3, p53, p38 and Bax expression, whereas the expression of anti-apoptotic signaling pathways, Bcl-2, was decreased. Additionally, berberine-treated cells had an increased level of generation of ROS and nitric oxide (NO). These results indicated that berberine induces apoptosis of HepG2 cells may be mediated oxidative injury acts as an early and upstream change, triggers mitochondrial dysfunction, Bcl-2 and Bax modulation, p38 and p53 activation, caspase-3 activation, and consequent leading to apoptosis.