• Title/Summary/Keyword: Energy load calculation

Search Result 239, Processing Time 0.025 seconds

Uncertainty reaction force model of ship stern bearing based on random theory and improved transition matrix method

  • Zhang, Sheng dong;Liu, Zheng lin
    • Ocean Systems Engineering
    • /
    • v.6 no.2
    • /
    • pp.191-201
    • /
    • 2016
  • Stern bearing is a key component of marine propulsion plant. Its environment is diverse, working condition changeable, and condition severe, so that stern bearing load is of strong time variability, which directly affects the safety and reliability of the system and the normal navigation of ships. In this paper, three affecting factors of the stern bearing load such as hull deformation, propeller hydrodynamic vertical force and bearing wear are calculated and characterized by random theory. The uncertainty mathematical model of stern bearing load is established to research the relationships between factors and uncertainty load of stern bearing. The validity of calculation mathematical model and results is verified by examples and experiment yet. Therefore, the research on the uncertainty load of stern bearing has important theoretical significance and engineering practical value.

Plant Minimum Stable Load (Pmin) Test for Ilijan CCPP

  • Kim, Si Moon;Yun, Wan No;Jang, Cheol Ho;Park, Se Ik
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.83-88
    • /
    • 2016
  • This paper describes the test results of plant minimum stable load (Pmin) for Ilijan Power Plant. The test was conducted on May 13 through 14, 2015 to investigate the plant operating and equipment condition in accordance with "Ilijan Plant Performance Test Procedure on Plant Minimum Stable Load" [1]. This paper also contains the assessment of the impact of Pmin to plant operating parameters and possible technical operating issues when operating at lower loads and to recommend the safe minimum load operation of Ilijan per block. In addition, this paper describes the performance calculation results of efficiency and heat rate depending on the load level.

Basic Study on Geothermal System Application Possibility of a Detached House (단독주택의 지열시스템 적용 가능성에 대한 기초연구)

  • Shin, Hee-Il;Jang, Tea-Ik
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.794-800
    • /
    • 2008
  • Due to high oil prices and global warming problems, researching an alternative energy source and decreasing the energy usage will be the key in the future. Unlike other alternative energy sources, geothermal energy is less dependent on the surrounding environment. Geothermal energy is the ideal energy source for buildings due to the simple and space saving installation. The system is semi permanent once it is installed and this will help reduce the energy usage in controlling the climate in buildings. Geothermal energy does not emit carbon dioxide and other gases that are harmful to the environment. Therefore geothermal energy will be the key in solving high oil prices and a decrease in fossil fuels by applying the geothermal energy system to detached house to counter future energy crisis.

  • PDF

A Study of Economic ESS Utilization Based on Supplement Control Plan for Stable Wind Energy Extraction (풍력발전의 전력공급 안정화를 위한 ESS 보조제어 기법과 경제적 용량 산정 연구)

  • Jung, Seungmin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.22-28
    • /
    • 2018
  • In case of developing a combined system by a number of distributed resources with storage device, a number of application suggests a huge capacity can derive operational flexibility both power supply issues or when unexpected situation imposed. However, it is important to determine a resonable energy capacity because the device have many controversial cost issues in current power system industry. An ESS application which focusing essentially required points can induce appropriate storage capacity that required in economic operation. In this paper, a curtailment supporting algorithm based on storage device is introduced, and applied in the capacity calculation method. The main algorithm pursues handling minor exceeding quantities which can cause mechanical load at blade; This paper tries to include it for configuring hybrid algorithm with pitch control. Several fluctuating conditions are utilized in simulation to reflect critical situation. The analyzing process focuses on the control feasibility with applied capacity and control method.

A Study on the Optimal Distribution toss Management Using toss factor in Power Distribution Systems (분산형전원이 도입된 배전계통의 손실산정기법에 관한 연구)

  • Rho Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.3
    • /
    • pp.231-240
    • /
    • 2005
  • Recently, the needs and concerns for the power loss are increasing according to the energy conservation at the level of the national policies and power utilities's business strategies. Especially, the issue of the power loss is the main factor for the determining the electric pricing rates in the circumstances of the deregulation of electrical industry. However, because of the lacking of management for power loss load factors (LLF) it is difficult to make a calculation for the power loss and to make a decision for the electric rates. And loss factor (k-factor) in korea, which is a most important factor for calculation of the distribution power loss, has been used as a fixed value of 0.32 since the fiscal year 1973, There(ore, this study presents the statistical calculation methods of the loss factors classified by load types and seasons by using the practical data of 65 primary feeders which are selected by proper procedures. Based on the above the algorithms and methods, the optimal method of the distribution loss management classified by facilities such as primary feeders, distribution transformers and secondary feeders is presented. The simulation results show the effectiveness and usefulness of the proposed methods.

  • PDF

A study on the saving of energy consumption load using electrical heat control system (전기적 열제어 시스템을 사용한 에너지 소비량 감소에 관한 연구)

  • Han, Kyu Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.1
    • /
    • pp.58-66
    • /
    • 2013
  • Most of steam power plant in Korea are heating the feed water system to prevent freezing water flowing in the pipe in winter time. The heating system is operated whenever the ambient temperature around the power plant area below 5 degree Centigrade. But this kind of heat supplying system cause a lot of energy consuming. If we think about the method that the temperature of the each pipe is controled by attaching the temperature measuring sensor like RTD sensor and heat is supplied only when the outer surface temperature of the pipe is under 5 degree Centigrade, then we can save a plenty of energy. In this study, the computer program package for simulation is used to compare the energy consumption load of both systems. Energy saving rate is calculated for the location of Youngweol area using the data of weather station in winter season, especially the January' severe weather data is analyzed for comparison. Various convection heat transfer coefficients for the ambient air and the flowing water inside the pipe was used for the accurate calculation. And also the various initial flowing water temperature was used for the system. Steady state analysis is done previously to approximate the result before the simulation. The result shows that the temperature control system using RTD sensor represents the high energy saving effect which is more than 90% of energy saving rate. Even in the severe January weather condition, the energy saving rate is almost 60%.

A Study on Process Improvement for Reduction of Pollution Loading Rate in Small Individual Sewage Plant (소규모 개인하수처리시설의 MBR공정 적용에 관한 연구)

  • Eom, Han Ki;Choi, Yoo Hyun;Joo, Hyun Jong
    • Journal of Environmental Science International
    • /
    • v.25 no.2
    • /
    • pp.323-329
    • /
    • 2016
  • In this study, the applicability of MBR process was evaluated to improve processing of personal sewage treatment facilities of $50m^3/day$ or less. As result of the research, stable discharge water quality could be secured as result of the MBR effector operation according to rate of inflow and inflow load and treatment efficiency of 98% or higher was shown by the membrane filtering method operation for SS, $BOD_5$. it was found that high treatment efficiency of 99% or higher. It is judged that detention time can be designed until 6.9 hr when applying MBR process on personal sewage treatment facilities with high pollution load and that cutback of pollution load can be possible through this study. It was shown that MBR process application reduces an annual cost of 4,829,600 won based on the basic unit calculation results and solves burden of amount of borne by causers according to excess of discharge water quality standards.

Behavior of concrete columns confined with both steel angles and spiral hoops under axial compression

  • Zhou, Chunheng;Chen, Zongping;Shi, Sheldon Q.;Cai, Liping
    • Steel and Composite Structures
    • /
    • v.27 no.6
    • /
    • pp.747-759
    • /
    • 2018
  • This study proposed a new type of concrete column that was confined with both steel angles and spiral hoops, named angle-steel and spiral confined concrete (ASCC) column. A total of 22 ASCC stub columns were tested under axial compression to investigate their behavior. For a comparison, three angle-steel reinforced concrete (ARC) stub columns were also tested. The test results indicated that ASCC column had a superior mechanical performance. The strength, ductility and energy absorption were considerably increased due to the improvement of confinement from spiral hoops. The confinement behavior and failure mechanism of ASCC column were investigated by the analysis of failure mode, load-deformation curve and section-strain distribution. Parametric studies were carried out to examine the influences of different parameters on the axial compression behavior of ASCC columns. A calculation approach was developed to predict the ultimate load carrying capacity of ASCC columns under axial compression. It was validated that the predicted results were in well agreement with the experimental results.

The study of the calculation of energy consumption load for heating and cooling in building using the Laplace Transform solution

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.3
    • /
    • pp.292-300
    • /
    • 2014
  • The Laplace Transform solution is used as a mathematical model to analyse the thermal performance of the building constructed using different wall materials. The solution obtained from Laplace Transform is an analytical solution of an one dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures. The main purpose of the study is showing the detail of obtaining solution process of the Laplace Transform. This study is conducted using weather data from two different locations in Korea: Seoul, Busan for both winter and summer conditions. A comparison is made for the cases of an on-off controller and a proportional controller. The weather data are processed to yield hourly average monthly values. Energy consumption load is well calculated from the solution. The result shows that there is an effect of mass on the thermal performance of heavily constructed house in mild weather conditions such as Busan. Building using proportional control experience a higher comfort level in a comparison of building using on-off control.

Empirical Analysis on the Cooling Load and Evaporation Efficiency of Fogging System in Greenhouses (온실의 냉방부하 및 포그시스템의 증발효율 실험분석)

  • Nam, Sang-Woon;Seo, Dong-Uk;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.147-152
    • /
    • 2015
  • In order to develop the cooling load estimation method in the greenhouse, the cooling load calculation formula based on the heat balance method was constructed and verified by the actual cooling load measured in the fog cooling greenhouse. To examine the ventilation heat transfer in the cooling load calculation formula, we measured ventilation rates in the experimental greenhouse which a cooling system was not operated. The ventilation heat transfer by a heat balance method showed a relatively good agreement. Evaporation efficiencies of the two-fluid fogging system were a range of 0.3 to 0.94, average 0.67, and it showed that they increased as the ventilation rate increased. We measured thermal environments in a fog cooling greenhouse, and calculated cooling load by heat balance equation. Also we calculated evaporative cooling energy by measuring the sprayed amount in the fogging system. And by comparing those two results, we could verify that the calculated and the measured cooling load showed a relatively similar trend. When the cooling load was low, the measured value was slightly larger than calculated, when the cooling load was high, it has been found to be smaller than calculated. In designing the greenhouse cooling system, the capacity of cooling equipment is determined by the maximum cooling load. We have to consider the safety factor when installed capacity is estimated, so a cooling load calculation method presented in this study could be applied to the greenhouse environmental design.