• 제목/요약/키워드: Energy load calculation

검색결과 238건 처리시간 0.025초

강제환기가 적용된 시험공간에서 냉난방부하의 시뮬레이션 및 실증실험 (Simulation and Verification Experiment of Cooling and Heating Load for a Test Space with Forced Ventilation)

  • 김동혁;홍희기;유호선;김욱중
    • 설비공학논문집
    • /
    • 제18권12호
    • /
    • pp.947-954
    • /
    • 2006
  • Building energy consumption according to the ventilation has been considered to be an important subject. The purpose of this study is to investigate the cooling and heating loads in a test space with a forced ventilating system. In the test space, on/off controlled air-conditioning and forced ventilating facility were operated between 8 : 30 to 21 : 00 during 4 days and some important data like temperatures and energy consumption were measured to obtain actual thermal loads. The simulation was carried out in a mode of temperature level control using a TRNSYS 15.3 with a precisely measured air change amount and performance data of air-conditioner. Heating load and cooling load including sensible and latent were compared between by experiment and by simulation. Both of thermal loads associated with ventilation show a close agreement within an engineering tolerance.

지열 시스템의 원예시설과 축사시설 적용에 관한 연구 (A Study on Applying the Ground Source Heat Pump System in Greenhouse and Livestock Facility)

  • 장재철;강은철;송준익;김지영;이의준
    • 한국지열·수열에너지학회논문집
    • /
    • 제5권2호
    • /
    • pp.1-6
    • /
    • 2009
  • In this paper, RETScreen program model has been investigated to predict the economic analysis for greenhouse and livestock facility. Load calculation result was 35.2[kW] of greenhouse and the calculation result of livestock facility was 35.5[kW]. Also, a case study of the RETScreen program indicated that the equity payback is 6.9 years for a greenhouse facility and the equity payback is 9.5 years for a livestock facility.

  • PDF

Study of Specific energy of mechanical destruction of ice for calculation of ice load on ships and offshore structures

  • Tsuprik, V.G.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권7호
    • /
    • pp.718-728
    • /
    • 2013
  • Analysis of scenarios of transportation oil and gas which produced in the Arctic and others cold seas shows that in the near-term there will be a significant increase of tonnage of tankers for oil and gas and number of ships which should be exploited in difficult ice conditions. For the construction of ice-resistant structures (IRS) intended for production of oil and gas and transportation of these products at ice-class vessels, calculating the load from ice to board the ship and on surface of supports of the platforms are the actuality and urgent tasks. These tasks have one basis in both cases: at beginning of the contact occurs fracture of edge of ice, then occurs compressing of rubble shattered of ice, then they extruding from contact area, after this next layer of ice begin to destruct. At calculating the strength of plating and elements construct of vessels, icebreakers and ice-resistant platforms the specific energy of mechanical destruction ice ${\epsilon}_{cr}$ is an important parameter. For the whole period of study of physical and mechanical characteristics of sea ice have been not many experimental studies various researchers to obtain numerical values of this energetic characteristic of the strength of ice by a method called Ball Drop Test. This study shows that the destruction of the ice from dynamic loading in zone of contact occurs in several cycles, and the ice destructed with a minimum numerical values of ${\epsilon}_{cr}$. The author offer this energy characteristic to take as a base value for the calculation of ice load on ships and offshore structures.

온실의 기간난방부하 산정을 위한 난방적산온도 비교분석 (Comparative Analysis of Accumulated Temperature for Seasonal Heating Load Calculation in Greenhouses)

  • 남상운;신현호;서동욱
    • 생물환경조절학회지
    • /
    • 제23권3호
    • /
    • pp.192-198
    • /
    • 2014
  • To establish the design criteria for seasonal heating load calculation in greenhouses, standard weather data are required. However, they are being provided only at seven regions in Korea. So, instead of using standard weather data, in order to find the method to build design weather data for seasonal heating load calculation, heating degree-hour and heating degree-day were analyzed and compared by methods of fundamental equation, Mihara's equation and modified Mihara's equation using normal and thirty years from 1981 to 2010 hourly weather data provided by KMA and standard weather data provided by KSES. Average heating degree-hours calculated by fundamental equation using thirty years hourly weather data showed a good agreement with them using standard weather data. The 24 times of heating degree-day showed relatively big differences with heating degree-hour at the low setting temperature. Therefore, the heating degree-hour was considered more appropriate method to estimate the seasonal heating load. And to conclude, in regions which are not available standard weather data, we suggest that design weather data should be analyzed using thirty years hourly weather data. Average of heating degree-hours derived from every year hourly weather data during the whole period can be established as environmental design standards, and also minimum and maximum of them can be used as reference data for energy estimation.

Determination of J-Resistance Curves of Nuclear Structural Materials by Iteration Method

  • Byun, Thak-Sang;Bong Sang lee;Yoon, Ji-Hyun;Kuk, Il-Hiun;Hong, Jun-Hwa
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(2)
    • /
    • pp.336-343
    • /
    • 1998
  • An iteration method has been developed for determining crack growth and fracture resistance cure (J-R curve) from the load versus load-line displacement record only. In this method, the hardening curve, the load versus displacement curve at a given crack length, is assumed to be a power-law function, where the exponent varies with the crack length. The exponent is determined by an iterative calculation method with the assumption that the exponent varies linearly with the load-line displacement. The proposed method was applied to the static J-R tests using compact tension(CT) specimens, a three-point bend (TPB) specimen, and a cracked round bar (CRB) specimen as well as it was applied to the quasi-dynamic J-R tests using CT specimens. The J-R curves determined by the proposed method were compared with those obtained by the conventional testing methodologies. The results showed that the J-R curves could be determined directly by the proposed iteration method with sufficient accuracy in the specimens from SA508, SA533, and SA516 pressure vessel steels and SA312 Type 347 stainless steel.

  • PDF

공동주택의 연료소모량 간이계산법에 관한 연구 (A Study on the Simplified Energy Calculation Method of Apartment Houses)

  • 임정명
    • 설비공학논문집
    • /
    • 제3권5호
    • /
    • pp.404-414
    • /
    • 1991
  • The purpose of this study is to compare the amount of heating, domestic hot water, and cooking fuel consumption with that of heating fuel consumption by the existing calculation method and to provide rational heating system design and energy conservation through presenting the simplified equation which can anticipate the amount of heating, domestic hot water, and cooking and the load mechanical equipments. The affecting factors to the amount of energy consumption are the case of Heating, Domestic Hot Water and Cooking in addition to the energy conservation intention.

  • PDF

Vortex Shedding을 고려한 Tower Flange 설계 (Tower Flange Design Considering Vortex Shedding)

  • 이현주;최원호;이승구
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.68-71
    • /
    • 2005
  • In the case of wind turbine design, Optimization of tower structure is very important because tower generally takes about $20\%$ of overall turbine cost. In this paper, we calculated wind loads considering vortex shedding, and optimized tower flange using the calculation results. For optimization, we used FEM to analyze structural strength of the flange and blade momentum theory to calculate wind loads.

  • PDF

750kW 풍력발전기 현장시험을 통한 하중 비교 (Load comparison of 750kW WTGS by field test)

  • 방조혁;홍혁수;박진일;류지윤
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.303-306
    • /
    • 2008
  • This study proposes an essential process of type certificate, which is load comparison for proving the calculated design load. The load measurement was carried out according to IEC 61400-13 standard and the load calculation was performed with same condition using FLEX 5 code. For more accurate load simulation, the controller parameter of original model at the design stage was modified to site optimized value and some node points are added to coincidence with measurement. The load comparison was performed with various wind parameter, turbulence intensity and wind shear. As a result, simulated loads ware good agreed with the measured load. Therefore, the calculated design loads according to IEC 61400-1 standard were proved to valid.

  • PDF

AN EVALUATION OF ENERGY PERFORMANCE IN SUPER HIGH-RISE APARTMENT HOUSING WITH EXTERIOR WINDOW TYPES

  • Sang-Ho Lee;Yong-Ho Park;Jong-Chan Lee
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.1637-1642
    • /
    • 2009
  • This study evaluates the energy performance of super high-rise residential buildings with e-QUEST simulation and calculates the annual cooling and heating load. The result of this study have concluded that the most influential factor is the characteristics of the window and also suggest the most efficient window system from the result of calculation of different glasses' cooling and heating load. The result of this study shows that The most efficient method to enhance the energy performance is to use low reflective 3 pairs Low-E glass and Low-E coating(inside of outer glass) pair glass.

  • PDF

BES 기법을 이용한 자연환기식 육계사의 난방에너지 분석 (Analysis of Heating Load of a Naturally Ventilated Broiler House using BES Simulation)

  • 홍세운;이인복;홍희기;서일환;황현섭;;유재인;권경석;하태환;김기성
    • 한국농공학회논문집
    • /
    • 제50권1호
    • /
    • pp.39-47
    • /
    • 2008
  • Most of the broiler houses in Korea have experienced problems on controlling the environmental conditions such as suitability, stability and uniformity of rearing condition inside the broiler house. It is very critical which if not properly controlled, would cause serious stress on the chickens. It is therefore urgent to develop optimum designs of naturally ventilated broiler house which is appropriate to the four seasons of Korea. Field experiment for this matter is very difficult to conduct due to the unpredictable and uncontrollable weather condition. In this study, the heating load of a naturally ventilated broiler house was calculated using TRANSYS 15 BES program while internal climate and thermal condition were computed using Fluent 6.2. The computed resulted of the conventional ventilation system (A) and upgraded ventilation system (B) (Seo et al, 2007) were compared with each other for cold season. The results of the Building Energy Simulation(BES) indicated that the system B, the upgraded ventilation system made 8% lower total heating load and 47% lower at only the broiler zone compared to the conventional broiler house. Considering the entire broiler house, the existence of middle ceiling made the heating energy 11% lower required than without middle ceiling. Accordingly, the system B with middle ceiling was found to save heating energy by 20% in average. This study showed that the BES program can be a very powerful to effectively compute the energy loads of agricultural building while the energy load is very close related to ventilation efficiency.