• Title/Summary/Keyword: Energy input-output analysis

Search Result 247, Processing Time 0.026 seconds

Signal Level Analysis of a Camera System for Satellite Application

  • Kong, Jong-Pil;Kim, Bo-Gwan
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.220-223
    • /
    • 2008
  • A camera system for the satellite application performs the mission of observation by measuring radiated light energy from the target on the earth. As a development stage of the system, the signal level analysis by estimating the number of electron collected in a pixel of an applied CCD is a basic tool for the performance analysis like SNR as well as the data path design of focal plane electronic. In this paper, two methods are presented for the calculation of the number of electrons for signal level analysis. One method is a quantitative assessment based on the CCD characteristics and design parameters of optical module of the system itself in which optical module works for concentrating the light energy onto the focal plane where CCD is located to convert light energy into electrical signal. The other method compares the design\ parameters of the system such as quantum efficiency, focal length and the aperture size of the optics in comparison with existing camera system in orbit. By this way, relative count of electrons to the existing camera system is estimated. The number of electrons, as signal level of the camera system, calculated by described methods is used to design input circuits of AD converter for interfacing the image signal coming from the CCD module in the focal plane electronics. This number is also used for the analysis of the signal level of the CCD output which is critical parameter to design data path between CCD and A/D converter. The FPE(Focal Plane Electronics) designer should decide whether the dividing-circuit is necessary or not between them from the analysis. If it is necessary, the optimized dividing factor of the level should be implemented. This paper describes the analysis of the electron count of a camera system for a satellite application and then of the signal level for the interface design between CCD and A/D converter using two methods. One is a quantitative assessment based on the design parameters of the camera system, the other method compares the design parameters in comparison with those of the existing camera system in orbit for relative counting of the electrons and the signal level estimation. Chapter 2 describes the radiometry of the camera system of a satellite application to show equations for electron counting, Chapter 3 describes a camera system briefly to explain the data flow of imagery information from CCD and Chapter 4 explains the two methods for the analysis of the number of electrons and the signal level. Then conclusion is made in chapter 5.

  • PDF

Analysis of relative displacement of electromagnetic suspension using CARSIM and Simulink (CARSIM- Simulink연동 해석을 이용한 전자기 현가장치의 상대변위 해석)

  • Kim, Ji-Hye;Kim, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.82-88
    • /
    • 2018
  • This study investigated the structure of an 8-pole 8-slot linear generator, which acts as an electromagnetic damper by combining the structure of an electromagnetic suspension device capable of generating electrical energy through energy harvesting by absorbing the vibration energy from the road surface while driving. To compare the energy harvesting effect of the electromagnetic suspension according to the actual road surface, a driving road test was simulated for two actual road conditions, an asphalt road surface and unpacked road surface condition, using a civilian combined vehicle model in conjunction with a vehicle simulation program, Carsim and Simulink. As a result, the relative displacements of the suspensions on the asphalt road surface and the unpaved road were 8 mm and 13 mm, respectively. By applying the suspension displacement value derived by modeling the linear generator coupled to the electromagnetic suspension, the simulation was then performed for an analysis time of 0.3s by applying the same analytical conditions using the commercial electromagnetic analysis program, ANSYS MAXWELL, The average power generation on the unpacked roads and asphalt roads was 198.6W and 98.7W respectively, which was 103.7% higher for unpackaged roads. Finally, to compare the sensitivity of the road surface frequency and the suspension input displacement to the power generation output, the sensitivity of the two variables was 1.725 and 1.283, respectively, and the road surface frequency had a 34.5% higher effect on the average power generation.

Analysis of Frequency Response of Piezo Stages and Scanning Path Monitoring/Compensation for Scanning Laser Optical Tweezers (주사 레이저 광집게를 위한 압전 구동기 주파수 특성 분석과 주사 경로 추적 및 보상)

  • Hwang, Sun-Uk;Lee, Song-Woo;Lee, Yong-Gu
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.2
    • /
    • pp.132-139
    • /
    • 2008
  • In scanning laser optical tweezers, high speed scanning stages are used to manipulate a laser beam spot. Due to the inertia of the stage, the output scanning signal decreases with increased frequency of the input signal. This discrepancy in the signals is difficult to observe since most of the energy from the laser beam is blocked out to avoid CCD damage. In this paper, we propose two methods to alleviate these problems. Firstly, frequency responses of piezo stages are measured to analyze the signal drops and the input signal is compensated accordingly. Secondly, an overlay of the scanning path is drawn on the live monitoring screen to enhance the visibility of the scanning path. The result is a drop-compensated scanning with clear path view.

Optimised neural network prediction of interface bond strength for GFRP tendon reinforced cemented soil

  • Zhang, Genbao;Chen, Changfu;Zhang, Yuhao;Zhao, Hongchao;Wang, Yufei;Wang, Xiangyu
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.599-611
    • /
    • 2022
  • Tendon reinforced cemented soil is applied extensively in foundation stabilisation and improvement, especially in areas with soft clay. To solve the deterioration problem led by steel corrosion, the glass fiber-reinforced polymer (GFRP) tendon is introduced to substitute the traditional steel tendon. The interface bond strength between the cemented soil matrix and GFRP tendon demonstrates the outstanding mechanical property of this composite. However, the lack of research between the influence factors and bond strength hinders the application. To evaluate these factors, back propagation neural network (BPNN) is applied to predict the relationship between them and bond strength. Since adjusting BPNN parameters is time-consuming and laborious, the particle swarm optimisation (PSO) algorithm is proposed. This study evaluated the influence of water content, cement content, curing time, and slip distance on the bond performance of GFRP tendon-reinforced cemented soils (GTRCS). The results showed that the ultimate and residual bond strengths were both in positive proportion to cement content and negative to water content. The sample cured for 28 days with 30% water content and 50% cement content had the largest ultimate strength (3879.40 kPa). The PSO-BPNN model was tuned with 3 neurons in the input layer, 10 in the hidden layer, and 1 in the output layer. It showed outstanding performance on a large database comprising 405 testing results. Its higher correlation coefficient (0.908) and lower root-mean-square error (239.11 kPa) were obtained compared to multiple linear regression (MLR) and logistic regression (LR). In addition, a sensitivity analysis was applied to acquire the ranking of the input variables. The results illustrated that the cement content performed the strongest influence on bond strength, followed by the water content and slip displacement.

Suggestion of an Automatic BIM-based Repair & Replacement (R&R) Cost Estimating Process (BIM기반 건축물 수선교체비 산정 자동화방안 제시)

  • Park, Ji-Eun;Yu, Jung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.87-88
    • /
    • 2016
  • In order to assess the design value of engineering work from the point of view of LCC (Life Cycle Cost) in Korea, it is mandatory for all construction works that the total construction costs are over 10 billion won. The LCC includes initial construction costs, maintenance & operation costs, energy costs, end-of-life costs, and so on. Among these, the portion for maintenance & operation costs for a building is sizeable, as compared to the initial construction costs. Furthermore, the paradigm for construction industry has rapidly shifted from 2D to BIM, which includes design planning and data management. However, the study of BIM-based LCC analysis is not adequate today, even though all domestic construction projects ordered by the Public Procurement Service have to adopt BIM. Therefore, this study suggests a methodology of BIM-based LCC analysis that is particularly focused on repair and replacement (R&R) cost. For this purpose, we defined requirements of calculating R&R cost and extracted X from the relevant IFC data. Thereafter, we input them to the ontology of calculating the initial construction costs to obtain an objective output. Finally, in order to automatically calculate R&R cost, mapping with R&R criteria was performed. We expect that our methodology will contribute to more efficiently calculate R&R cost and, furthermore, that this methodology will be applicable to all range of total LCC. Thus, the proposed process of automatic BIM-based LCC analysis will contribute to making LCC analysis more fast and accurate than it is at present.

  • PDF

Analysis of CO2 Emission Intensity per Industry using the Input-Output Tables 2003 (산업연관표(2003년)를 활용한 산업별 CO2 배출 원단위 분석)

  • Park, Pil-Ju;Kim, Mann-Young;Yi, Il-Seuk
    • Environmental and Resource Economics Review
    • /
    • v.18 no.2
    • /
    • pp.279-309
    • /
    • 2009
  • Greenhouse gas emissions should be precisely forecast to reduce the emissions from industrial production processes. This study calculated the direct and indirect $CO_2$ emission intensities of 401 industries using the Input-Output tables 2003 and statistical data on the amount of energy use. This study had some limitations in drawing study findings because overseas data were used given the lack of domestic data. Other limiting factors included the oil distribution problems in the oil refinery sector, re-review of carbon neutral, and insufficient consideration of waste treatment. Nonetheless, this study is very meaningful since the direct and indirect $CO_2$ emission intensities of 401 industries were calculated. Specifically, this study considered from the zero-waste perspective the effects of waste, which attract interest worldwide since coke gas and gas from the steel industry are obtained as byproducts for the first time in Korea. According to the results of the analysis of $CO_2$ emission intensity per industry, typical industries whose indirect $CO_2$ emission intensity is high include crude steel making, Remicon, steel wire rods & track rail, cast iron, and iron reinforcing rods & bar steel. These industries produce products using the raw materials produced in the industrial sector whose $CO_2$ emission intensity is high. The representative industries whose direct $CO_2$ emission intensity is high include cement, pig iron, lime & plaster products, andcoal-based compounds. These industries extract raw ore from nature and refine them into raw materials that are useful in other industries. The findings in this study can be effectively used for the following case: estimation of target $CO_2$ emission reduction level reflecting each industrial sector's characteristics, calculation of potential emission reduction of each policy to reduce $CO_2$ emissions, identification of a firm's $CO_2$ emission level, and setting of the target level of emission reduction. Moreover, the findings in this study can be utilized widely in fields such as System of integrated Environmental and Economic Accounting(SEEA) and Material Flow Analysis(MFA) as the current topic of research in Korea.

  • PDF

Efficiency Analysis of Compact Type Steam Reformer (컴팩트형 수증기 개질장치 효율분석)

  • Oh, Young-Sam;Song, Taek-Yong;Baek, Young-Soon;Choi, Lee-Sang
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.4
    • /
    • pp.304-312
    • /
    • 2002
  • In this study, the performance of the $5Nm^3/hr$ compact type steam reformer which was developed for application of fuel cell or hydrogen station was evaluated in terms of gas process efficiency. For these purposes, reforming efficiency and total efficiency with system load change were analyzed. The reforming efficiency was calculated from the total molar flow of hydrogen output over total fuel flow input to the reformer and the burner on the higher heating value(HHV). In the case of the total efficiency, recovered heat at the heat recovery exchanger was considered. From the results, it was known that system performance was stable, because methane conversion showed the a slight decline which is about 2% though increasing system load to full. Reforming efficiency was increased from 20% to 58%, respectively as increasing system load from 10% to 90%. It was found that total efficiency was higher then reforming efficiency because of terms of heat recovered. As a results, it was known that total efficiency was increased form 75% to 83% at the 10% and 90% system load, respectively. From these results, it is concluded that compact steam reformer which is composed of stacking plate-type reactors is suitable to on-site hydrogen generator or to fuel cell application because of quick start within 1 hr and good performance.

Directions towards sustainable agricultural systems in Korea

  • Kim, Chang-Gil
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.3-3
    • /
    • 2017
  • The question of how to establish sustainable agricultural systems has become as prominent as questions related to water, energy and climate change. High input/high output agriculture has brought with it many adverse effects; the massive deterioration of soil and water in both quantity and quality, increased greenhouse gas emissions and an increased prevalence of unsafe foods. Additionally, urbanization and climate change has worsened the shortage of farmland and reduced the supply of agricultural water. Given these challenges, maintaining, conserving and efficiently using agri-environmental resources, through fostering of sustainable agriculture, have emerged as key tasks in solving these problems. What is needed therefore is research, based on systematic and comprehensive empirical analyses, that can propose plans and methods for establishing an appropriate sustainable agricultural system. The empirical analysis of sustainable agricultural system is approached separately from economic, environmental and social aspects. An analysis of environment effect reveals that the available phosphate level is 1.3~2.1 times greater than the optimal amount in rice paddies, upland fields and orchards. Further examination has revealed that the excess nutrient is polluting both ground water and surface water. Analytical results for economic feasibility show that factors of production have been invested heavily in the rice crop. Under these conditions, sustainable agriculture, including low-input agriculture, appears to be a possible alternative that will facilitate simultaneous improvements in both economic feasibility and environment effects. Analysis results for sociality reveal that social factors include the value of producer, association and interior networks. Social conditions are comprised of leadership, consumers' awareness, education and conflict solutions. In addition, analysis as to the degree investments contribute to improving agricultural value added has revealed that the direct payment program is the most effective instrument. Experts confirm that economic feasibility can be improved by scientific and well-reasoned nutrient management on the basis of soil testing. Farmers pointed to 'economic factors' as being the largest obstacle to switching to the practice of sustainable agriculture. They also indicate 'uncertainty with regards to sustainable agriculture technology' as an impediment to practicing sustainable agriculture. Even so, farmers who believe environmental and regional issues to be the most pressing problems have expanded their practice of sustainable agriculture. The keys to establishing sustainable agriculture system are classified into the following four aspects. Firstly, from an economic aspect, the research indicates that agricultural policy needs to be integrated with environmental policy and that the function of market making based on the value chain needs to be revitalized. Secondly, from an environmental aspect, there is a need for an optimal resource management system to be established in the agricultural sector. In addition, sustainable agriculture practice will need to be extended with attendant environmentally-friendly and sustainable intensive technology also requiring further development. Thirdly, from a social aspect, green agriculture management needs to be fostered, technology and education extended, and social conflict mediated. Lastly, from a governance aspect, it will be necessary to strengthen good governance, assign and share suitable roles and responsibilities, build a cooperation system and utilize community supported agriculture.

  • PDF

Evaluation of Green House Gases (GHGs) Reduction Plan in Combination with Air Pollutants Reduction in Busan Metropolitan City in Korea

  • Cheong, Jang-Pyo;Kim, Chul-Han;Chang, Jae-Soo
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.4
    • /
    • pp.228-236
    • /
    • 2011
  • Since most Green House Gases (GHGs) and air pollutants are generated from the same sources, it will be cost-effective to develop a GHGs reduction plan in combination with simultaneous removal of air pollutants. However, effects on air pollutants reduction according to implementing any GHG abatement plans have been rarely studied. Reflecting simultaneous removal of air pollutants along with the GHGs emission reduction, this study investigated relative cost effectiveness among GHGs reduction action plans in Busan Metropolitan City. We employed the Data Envelopment Analysis (DEA), a methodology that evaluates relative efficiency of decision-making units (DMUs) producing multiple outputs with multiple inputs, for the investigation. Assigning each GHGs reduction action plan to a DMU, implementation cost of each GHGs reduction action plan to an input, and reduction potential of GHGs and air pollutants by each GHGs reduction action plan to an output, we calculated efficiency scores for each GHGs reduction action plan. When the simultaneous removal of air pollutants with the GHGs reduction were considered, green house supply-insulation improvement and intelligent transportation system (ITS) projects had high efficiency scores for cost-positive action plans. For cost-negative action plans, green start network formation and running, and daily car use control program had high efficiency scores. When only the GHGs reduction was considered, project priority orders based on efficiency scores were somewhat different from those when both the removal of air pollutants and GHGs reduction were considered at the same time. The expected action plan priority difference is attributed to great difference of air pollutants reduction potential according to types of energy sources to be reduced.

A Study of Weldability for Pure Titanium by Nd:YAG Laser(II) - Welding Properties of Butt Welding - (순티타늄판의 Nd:YAG 레이저 용접성에 관한 연구(II) - 맞대기 용접 특성 -)

  • Kim, Jong-Do;Kwak, Myung-Sub;Song, Moo-Keun;Park, Seung-Ha
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.68-73
    • /
    • 2009
  • Recently, as titanium and titanium alloys are being increasingly used in wide areas, there are on-going researches to obtain high quality weld zone. In particular, growing interest is being drawn to laser welding, which involves low heat input and large aspect ratio in various welding processes and can facilitate shield in atmospheric condition compared with electron beam welding. The first report covered the analysis of embrittlement by the bead color of weld zone through quantitative analysis of oxygen and nitrogen and measurement of hardness as basic experiment to apply laser welding to titanium. Results indicated that the element that affect embrittlement the most was nitrogen, and as embrittlement and oxygenation go on, bead color changed to silver, gold, brown, blue and gray. This study performed butt welding of pure titanium and STS304 by using 1kW CW Nd:YAG laser, and to find out basic physical properties, evaluated welding performance by laser output, welding speed, root gap and misalignment etc, and examined mechanical properties through tensile stress and Erichsen test. The reason particles of pure titanium welded metal and HAZ are greater than STS304 is because they are pure metal and do not include many impure elements that work as nuclei in case of resolidification, thus becoming coarse columnar crystals eventually. In addition, the reason STS304 requires more energy during welding than pure titanium is because the particle size of base metal is smaller.