• 제목/요약/키워드: Energy input model

검색결과 620건 처리시간 0.025초

Uncertain-parameter sensitivity of earthquake input energy to base-isolated structure

  • Takewaki, Izuru
    • Structural Engineering and Mechanics
    • /
    • 제20권3호
    • /
    • pp.347-362
    • /
    • 2005
  • The input energy to a base-isolated (BI) building during an earthquake is considered and formulated in the frequency domain. The frequency-domain approach for input energy computation has some notable advantages over the conventional time-domain approach. Sensitivities of the input energy to the BI building are derived with respect to uncertain parameters in the base-isolation system. It is demonstrated that the input energy can be of a compact form via the frequency integration of the product between the input component (Fourier amplitude spectrum of acceleration) and the structural model component (so-called energy transfer function). With the help of this compact form, it is shown that the formulation of earthquake input energy in the frequency domain is essential for deriving the sensitivities of the input energy to the BI building with respect to uncertain parameters. The sensitivity expressions provide us with information on the most unfavorable combination of the uncertain parameters which leads to the maximum energy input.

東海에서의 파랑추산을 위한 심해파랑모형에 대한 연구 (Deep Water Wave Model for the East Sea)

  • 윤종태
    • 한국해양공학회지
    • /
    • 제13권2호통권32호
    • /
    • pp.116-128
    • /
    • 1999
  • A deep water wave prediction model applicable to the East Sea is presnted. This model incorporates rediative transter of energy specrum, atmospheric input form the wind, nonlinear interaction, and energy dissipation by white capping. The propagation scheme by Gadd shows satisfactory results and the characteristics of the nonlinear interaction is simulated well by discrete interaction approximatiion. The application of the model to the sea around the Korean Peninsula shows reasonable agreement with the observation.

  • PDF

IFCXML Based Automatic Data Input Approach for Building Energy Performance Analysis

  • Kim, Karam;Yu, Jungho
    • Journal of Construction Engineering and Project Management
    • /
    • 제3권1호
    • /
    • pp.14-21
    • /
    • 2013
  • To analyze building energy consumption, the building description for building energy performance analysis (BEPA) is required. The required data input for subject building is a basic step in the BEPA process. Since building information modeling (BIM) is applied in the construction industry, the required data for BEPA can be gathered from a single international standard file format like IFCXML. However, in most BEPA processes, since the required data cannot be fully used from the IFCXML file, a building description for BEPA must be created again. This paper proposes IFCXML-based automatic data input approach for BEA. After the required data for BEPA has been defined, automatic data input for BEPA is developed by a prototype system. To evaluate the proposed system, a common BIM file from the BuildingSMART website is applied as a sample model. This system can increase the efficiency and reliability of the BEPA process, since the data input is automatically and efficiently improved by directly using the IFCXML file..

IFCXML BASED AUTOMATIC DATA INPUT APPROACH FOR BUILDING ENERGY PERFORMANCE ANALYSIS

  • Ka-Ram Kim;Jung-Ho Yu
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.173-180
    • /
    • 2013
  • To analyze building energy consumption, the building description for building energy performance analysis (BEPA) is required. The required data input for subject building is a basic step in the BEPA process. Since building information modeling (BIM) is applied in the construction industry, the required data for BEPA can be gathered from a single international standard file format like IFCXML. However, in most BEPA processes, since the required data cannot be fully used from the IFCXML file, a building description for BEPA must be created again. This paper proposes IFCXML-based automatic data input approach for BEA. After the required data for BEPA has been defined, automatic data input for BEPA is developed by a prototype system. To evaluate the proposed system, a common BIM file from the BuildingSMART website is applied as a sample model. This system can increase the efficiency and reliability of the BEPA process, since the data input is automatically and efficiently improved by directly using the IFCXML file.

  • PDF

Effects of Input Variables in Radiological Accident Consequence Assessment

  • Han, Moon-Hee;Hwang, Won-Tae;Kim, Eun-Han;Suh, Kyung-Suk;Park, Young-Gil
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(2)
    • /
    • pp.659-664
    • /
    • 1998
  • The importance of input wariables of real-time accident consequence assessment model has been analyzed. Partial correlation coefficients of input variables related to the plume and the ingestion exposure have been estimated using latino hypercube sampling technique. It is known that wind speed and growth dilution rate are the most important variable in plume and ingestion exposure, respectively.

  • PDF

Load Modeling based on System Identification with Kalman Filtering of Electrical Energy Consumption of Residential Air-Conditioning

  • Patcharaprakiti, Nopporn;Tripak, Kasem;Saelao, Jeerawan
    • International journal of advanced smart convergence
    • /
    • 제4권1호
    • /
    • pp.45-53
    • /
    • 2015
  • This paper is proposed mathematical load modelling based on system identification approach of energy consumption of residential air conditioning. Due to air conditioning is one of the significant equipment which consumes high energy and cause the peak load of power system especially in the summer time. The demand response is one of the solutions to decrease the load consumption and cutting peak load to avoid the reservation of power supply from power plant. In order to operate this solution, mathematical modelling of air conditioning which explains the behaviour is essential tool. The four type of linear model is selected for explanation the behaviour of this system. In order to obtain model, the experimental setup are performed by collecting input and output data every minute of 9,385 BTU/h air-conditioning split type with $25^{\circ}C$ thermostat setting of one sample house. The input data are composed of solar radiation ($W/m^2$) and ambient temperature ($^{\circ}C$). The output data are power and energy consumption of air conditioning. Both data are divided into two groups follow as training data and validation data for getting the exact model. The model is also verified with the other similar type of air condition by feed solar radiation and ambient temperature input data and compare the output energy consumption data. The best model in term of accuracy and model order is output error model with 70.78% accuracy and $17^{th}$ order. The model order reduction technique is used to reduce order of model to seven order for less complexity, then Kalman filtering technique is applied for remove white Gaussian noise for improve accuracy of model to be 72.66%. The obtained model can be also used for electrical load forecasting and designs the optimal size of renewable energy such photovoltaic system for supply the air conditioning.

용접 잔류응력 해석을 위한 Heat Input Model 개발 (Modeling of Welding Heat Input for Residual Stress Analysis)

  • 심용래;이성근
    • Journal of Welding and Joining
    • /
    • 제11권3호
    • /
    • pp.34-47
    • /
    • 1993
  • 용접에서 발생하는 열응력 및 잔류응력을 해석하기 위한 유한요소용 모델을 개발하였다. 여러 가 지 변수의 연구를 통하여 Ramp heat input function과 Lumped모델을 제시하였다. 용접부에 열입 력을 점차적으로 주기 위하여 Ramp heat input을 이용하였으며 Ramp input을 통하여 이차원 모 델에서의 이동열원의 영향을 고려하였고 실험치와 비교에서 최적 ramp시간을 결정하였다. 다층용 접에서는 용접 pass 에 비례하여 계산시간이 증가한다. 따라서 후판용접의 잔류응력계산에는 막 대한 계산시간이 필요하며 이를 줄이기 위하여 Lumped 모델을 개발하였다. 이 Lumped모델에서 는 각 용접층에 들어있는 용접 pass들을 하나의 lumped pass으로 이용하였으며 각 pass를 따로 계산한 모델 및 시험치와의 비교를 통하여 최적 lumped technique을 제시하였다. *****Finite element models were developed for thermal and residual stress analysis for the specific welding problems. They were used to evaluate the effectiveness of the various welding heat input models, such as ramp heat input function and lumped pass models. Through the parametric studies, thermal-mechanical modeling sensitivity to the ramp function and lumping techniques was determined by comparing the predicted results with experimental data. The kinetics for residual stress formation during welding can be developed by iteration of various proposed mechanisms in the parametric study. A ramp heat input function was developed to gradually apply the heat flux with variable amplitude to the model. This model was used to avoid numerical convergence problems due to an instantaneous increase in temperature near the fusion zone. Additionally, it enables the model to include the effect of a moving arc in a two-dimensional plane. The ramp function takes into account the variation in the out of plane energy flow in a 2-D model as the arc approaches, travels across, and departs from each plane under investigation. A lumped pass model was developed to reduce the computation cost in the analysis of multipass welds. Several weld passes were assumed as one lumped pass in this model. Recommendations were provided about ramp lumping techniques and the optimum number of weld passes that can be combined into a single thermal input.

  • PDF

산업연관분석을 이용한 수소경제의 경제적 파급 효과 분석 (Measuring the Economic Impacts of Hydrogen Economy in South Korea: An Input-output Approach)

  • 최수빈;김주희;유승훈
    • 한국수소및신에너지학회논문집
    • /
    • 제34권5호
    • /
    • pp.398-412
    • /
    • 2023
  • The Korean government is actively promoting the hydrogen industry as a key driver of economic growth. This commitment is evident in the 2019 hydrogen economy activation roadmap and the 2021 basic plan for hydrogen economy implementation. This study quantitatively analyzes the economic impact of the hydrogen economy using input-output analysis based on the Bank of Korea's 2019 input-output table, projecting its size by 2050. Four parts dealt with production-inducing, value-added creation, employment-inducing, and wage-inducing based on a demand-driven model. The results reveal that transportation had the most remarkable economic effect throughout the hydrogen economy, and production was the least. The hydrogen economy is projected to reach 71.2 trillion won by 2050.

온도 및 습도의 단기 예측에 있어서 역전파 알고리즘의 적용 (Application of Back-propagation Algorithm for the forecasting of Temperature and Humidity)

  • 정효준;황원태;서경석;김은한;한문희
    • 환경영향평가
    • /
    • 제12권4호
    • /
    • pp.271-279
    • /
    • 2003
  • Temperature and humidity forecasting have been performed using artificial neural networks model(ANN). We composed ANN with multi-layer perceptron which is 2 input layers, 2 hidden layers and 1 output layer. Back propagation algorithm was used to train the ANN. 6 nodes and 12 nodes in the middle layers were appropriate to the temperature model for training. And 9 nodes and 6 nodes were also appropriate to the humidity model respectively. 90% of the all data was used learning set, and the extra 10% was used to model verification. In the case of temperature, average temperature before 15 minute and humidity at present constituted input layer, and temperature at present constituted out-layer and humidity model was vice versa. The sensitivity analysis revealed that previous value data contributed to forecasting target value than the other variable. Temperature was pseudo-linearly related to the previous 15 minute average value. We confirmed that ANN with multi-layer perceptron could support pollutant dispersion model by computing meterological data at real time.

장기 에너지 수급체계화 연구 (Long-term Energy Systems Otimization Study)

  • 김풍일
    • 한국경영과학회지
    • /
    • 제4권2호
    • /
    • pp.35-39
    • /
    • 1979
  • In order to recommend future national policy directions on energy supply and consumption and to suggest energy technological priorities to be developed, comprehensive energy models have been developed through this study in a sense of strategic and systematic approach. The “energy input-output model” has been formulated to analyze the mutual impacts between energy consumption patterns and industrial structures and to calculate energy intensities of industrial sectors. The long-term energy demands to the year 2000 were forecasted by using multi-regressional method and the optimal energy flow balances for five-year interval have been studied by using the “energy linear programming model” being took full account of interfuel substitutability and technology.

  • PDF