• Title/Summary/Keyword: Energy input

Search Result 2,481, Processing Time 0.033 seconds

Measuring the Economic Impacts of Hydrogen Economy in South Korea: An Input-output Approach (산업연관분석을 이용한 수소경제의 경제적 파급 효과 분석)

  • SU-BIN CHOI;JU-HEE KIM;SEUNG-HOON YOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.398-412
    • /
    • 2023
  • The Korean government is actively promoting the hydrogen industry as a key driver of economic growth. This commitment is evident in the 2019 hydrogen economy activation roadmap and the 2021 basic plan for hydrogen economy implementation. This study quantitatively analyzes the economic impact of the hydrogen economy using input-output analysis based on the Bank of Korea's 2019 input-output table, projecting its size by 2050. Four parts dealt with production-inducing, value-added creation, employment-inducing, and wage-inducing based on a demand-driven model. The results reveal that transportation had the most remarkable economic effect throughout the hydrogen economy, and production was the least. The hydrogen economy is projected to reach 71.2 trillion won by 2050.

A Study on the Energy Conservational HVAC System Design Strategies (에너지 절약적 공조시스템 선정을 위한 기초적 연구)

  • Cho, Jin-Kyun;Hong, Min-Ho;Jeong, Cha-Su;Kim, Byung-Seon
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.58-63
    • /
    • 2007
  • Lots of needs are being paid for how to design HVAC system in large-scale buildings. Increasing awareness of energy use is main point of this research. HVAC systems' energy characteristics are not clearly identified and understood, so the optimal design of HVAC system is very important. The energy parameters of HVAC design that are system input energy, water/air moving equipments (pumps/fans) energy and outdoor air conditioning energy for IAQ are important. The purpose of this study is to provide the basic data for energy conservational HVAC design strategies.

  • PDF

Seismic Energy Demand of Structures Depending on Characteristics of Earthquakes (지진하중 특성에 따른 구조물의 에너지 요구량)

  • Choi, Hyun-Hoon;Kim, Jin-Koo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.121-128
    • /
    • 2005
  • In this study the influences of ground motion characteristics and structural properties on energy demands were evaluated using 100 earthquake ground motions recorded in different soil conditions, and the results were compared with those of previous works. Results show that ductility ratios and the site conditions have significant influence on input energy. The ratio of hysteretic to input energy is considerably influenced by the ductility ratio and damping ratio, while site condition has minor effects.

  • PDF

Deep Water Wave Model for the East Sea (東海에서의 파랑추산을 위한 심해파랑모형에 대한 연구)

  • Yoon, Jong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.116-128
    • /
    • 1999
  • A deep water wave prediction model applicable to the East Sea is presnted. This model incorporates rediative transter of energy specrum, atmospheric input form the wind, nonlinear interaction, and energy dissipation by white capping. The propagation scheme by Gadd shows satisfactory results and the characteristics of the nonlinear interaction is simulated well by discrete interaction approximatiion. The application of the model to the sea around the Korean Peninsula shows reasonable agreement with the observation.

  • PDF

Application of Input-Output Table to Estimate of Amount of Energy Consumption and CO2 Emission Intensity in the Construction Materials -Focusing on Input-Output Tables Published in 2005, 2007- (건축공사 주요자재별 에너지소비량 및 CO2 배출 원단위 값 산출에 산업연관표 적용 적정성 검토 연구 -2005년, 2007년 산업연관표를 중심으로-)

  • Jung, Young-Chul;Kim, Sung-Eun;Jang, Young-Jun;Kim, Tae-Hui;Kim, Gwang-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.3
    • /
    • pp.247-255
    • /
    • 2011
  • Currently, there is database for per unit requirements of major construction materials in terms of energy consumption and $CO_2$ emission based on the input-output table published by the Bank of Korea in 2000, but no database for per unit requirements based on input-output tables was published in 2005 and 2007. The purpose of this study was to calculate the unit requirement values of major construction materials in terms of energy consumption and $CO_2$ emission generated by using the input-output tables published in 2005 and 2007. To estimate the unit requirement values, a database building method with the input-output tables was adopted by selecting 16 types of construction materials in wide use on construction sites. When the study results were compared with existing unit requirement values based on the input-output table of 2000, there were small discrepancies, from which it can be interpreted that the method used in the study is reasonable. Unit requirement values estimated based on input-output tables of 2005 and 2007 tended to decrease, and the highest value of energy consumption and $CO_2$ emission were found in the materials using cement and rebar.

Analysis of Sectoral Energy Use Pattern with Energy Input-Output Approach (에너지산업연관분석을 이용한 산업별 에너지 사용 pattern 분석)

  • Chung, Whan-Sam;Tohno, Susumu;Shim, Sang-Yul
    • Journal of Energy Engineering
    • /
    • v.17 no.3
    • /
    • pp.145-152
    • /
    • 2008
  • Approaching to the era of high energy price and energy sources scarcity, the demand for governmental intervention to mitigate the short-term shocks is highly increasing. When any energy policy is implemented, double-side effects would be derived. To begin with positive aspect, by decreasing energy import, unnecessary currency outflow can be prevented and the resultant saved money will be appropriately allocated. Furthermore, industrial competitiveness will be assured by reducing use of expensive energy. On the contrary, inappropriate energy saving policy may lead to unexpected negative effects that would hinder improvement in productivity due to indiscreet replacing energy by equipments. In order to enhance effectiveness of energy policy, efforts should be made in advance to understand the energy use pattern of each industry sector which composes the economy. Therefore, in this study, an energy input-output method, one of the macroscopic approaches, is applied to analyze energy use patterns of each industry sector in Korea. Using this method, a quantitative assessment is performed to obtain the energy use intensity and the amount of energy uses with respect to energy types.

Energy-Efficiency and Transmission Strategy Selection in Cooperative Wireless Sensor Networks

  • Zhang, Yanbing;Dai, Huaiyu
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.473-481
    • /
    • 2007
  • Energy efficiency is one of the most critical concerns for wireless sensor networks. By allowing sensor nodes in close proximity to cooperate in transmission to form a virtual multiple-input multiple-output(MIMO) system, recent progress in wireless MIMO communications can be exploited to boost the system throughput, or equivalently reduce the energy consumption for the same throughput and BER target. However, these cooperative transmission strategies may incur additional energy cost and system overhead. In this paper, assuming that data collectors are equipped with antenna arrays and superior processing capability, energy efficiency of relevant traditional and cooperative transmission strategies: Single-input-multiple-output(SIMO), space-time block coding(STBC), and spatial multiplexing(SM) are studied. Analysis in the wideband regime reveals that, while receive diversity introduces significant improvement in both energy efficiency and spectral efficiency, further improvement due to the transmit diversity of STBC is limited, as opposed to the superiority of the SM scheme especially for non-trivial spectral efficiency. These observations are further confirmed in our analysis of more realistic systems with limited bandwidth, finite constellation sizes, and a target error rate. Based on this analysis, general guidelines are presented for optimal transmission strategy selection in system level and link level, aiming at minimum energy consumption while meeting different requirements. The proposed selection rules, especially those based on system-level metrics, are easy to implement for sensor applications. The framework provided here may also be readily extended to other scenarios or applications.

An Analysis on Shadow Price, Substitutability, and Productivity Growth Effect of Non-Priced Renewable Energy in the Korean Manufacturing Industries (국내 제조업에 대한 비가격 신재생에너지의 암묵가격, 대체가능성, 생산성 파급효과 분석)

  • Lee, Myunghun
    • Environmental and Resource Economics Review
    • /
    • v.24 no.4
    • /
    • pp.727-745
    • /
    • 2015
  • This paper analyzes the firms' optimization behavior in response to rising demand for non-priced renewable energy in the manufacturing industries by using an input distance function. The annual estimates of the shadow price of renewable energy is derived and the trend of its shadow price over time is analyzed. The degree of substitution of renewable energy for fossil-fuels is examined. The input-based Malmquist productivity index, defined as a composite of the technical efficiency and technical change measures, is measured. The contribution of renewable energy input growth to the Malmquist index is analyzed. Empirical results indicate that the shadow price of renewable energy declined at an average annual rate of 17% over the period 1992-2012. Substitutability between renewable energy and fossil-fuels was limited. On average, a 1% increase in renewable energy would decrease Malmquist index by 0.04% per year.

Effect of Iodine Input in the Liquid-Liquid Separation Properties on Bunsen Reaction Process (분젠반응공정에서 요오드 투입에 따른 2액상 분리 특성)

  • Jeong, Heondo;Kim, In-Hwan;Kim, Tae-Hwan;Choo, Ko-Yeon;Bae, Gi-Gwang
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.633-638
    • /
    • 2008
  • The bunsen reaction, part of IS(Iodine-sulfur) cycle that one of the hydrogen production by the thermochemical water splitting, was investigated. It was observed that $H_2SO_4$ was uniformly generated and generation of $H_2SO_4$ was independent of iodine input. However, generation of HI was decreased with increasing iodine input. It was thought that HI and unreacted iodine were formed complex compound such as $HI_3$ $HI_5$ or $HI_7$. The complex compound accelerated liquid-liquid separation properties in the product. It was also revealed that reaction kinetics was increased with increasing iodine input. Liquid-liquid separation properties were improved with increasing iodine input and reaction temperature. Moreover, no side reaction was occurred at all reaction conditions.

Net Energy Analysis for Protected Vegetable Production System (시설채소 생산시스템의 순 에너지 분석)

  • 홍지형
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.1
    • /
    • pp.55-64
    • /
    • 1995
  • This paper presents analytic results of energy sequestered for the forcing cultural Cu- cumber and the others production system with the input-output tables method in the suthern parts of Korea. In this study an attempt is made to evaluate input of direct and indirect energy, output of yield energy and net energy in order to achieve increased energy productivity under P E greenhouse. Cultural practices were grouped soil and soilless with perlite for vegetable production. The results from this study are summarized as follows : 1. Total energy inputs in cucumber production were calculated to be 510 GJ/l0a(di- rect energy : 480 GJ/lOa, indirect energy : 30 GJ/lOa) from soil culture and 440 GJ/ 10a(direct energy : 420 GJ/lOa, indirect energy : 20 GJ/lOa) from soilless culture in perlite hydroponics. 2. Energy outputs from cucumber and biomass were 7 GJ/lOa and 120 GJ/lOa at a uniform rate respectively. 3. Heating fuel as diesel is a major energy inputs approaching 90% of the total energy requirements for cucumber production. 4. Net energy in cucumber production was calculated to be 503 GJ/lOa from soil cul- ture and 431 GJ/lOa from soilless culture. Net energy productivity was maintained costantly as 0.98. 5. Energy productivity in cucumber was calculated to be 0.029 kg/MJ from soil culture and 0.043kg/MJ from soilless culture, while energy efficiency was 0.012 and 0.015 respectively. It is expected that a soilless cultural production system seems to be reduc- tive in seguestered energy input by 13%.

  • PDF