• Title/Summary/Keyword: Energy input

Search Result 2,465, Processing Time 0.041 seconds

Effects of Input Variables in Radiological Accident Consequence Assessment

  • Han, Moon-Hee;Hwang, Won-Tae;Kim, Eun-Han;Suh, Kyung-Suk;Park, Young-Gil
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.659-664
    • /
    • 1998
  • The importance of input wariables of real-time accident consequence assessment model has been analyzed. Partial correlation coefficients of input variables related to the plume and the ingestion exposure have been estimated using latino hypercube sampling technique. It is known that wind speed and growth dilution rate are the most important variable in plume and ingestion exposure, respectively.

  • PDF

Application of Piezoelectric Smart Structures for Statistical Energy Analysis (압전 지능 구조물을 이용한 통계적 에너지 해석 기법)

  • 김재환;김정하;김재도
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.257-264
    • /
    • 2001
  • In this research, piezoelectric smart structures are applied for SEA(Statistical Energy Analysis), which is well known approach for high frequency analysis. A new input power measurement based on piezoelectric electrical power measurement is proposed and compared with the conventional method in SEA. As an example, a simple aluminum beam on which piezoelectric actuator is attached is considered. By measuring the electrical impedance and electrical current of the piezoelectric actuator, the electrical power given on the actuator is found and this is In turn converted into the mechanical energy. From the measured value of the stored energy of the beam, the Internal loss factor is calculated and this value shows a good agreement with that given by the conventional method as well as the theoretical value. To compare the coupling loss factor, L-shape beam system which consists of a aluminum beam subsystem and a steel beam subsystem coupled by three pin is taken as second example. The input power and stored energy of each subsystem are found by the proposed approach. The coupling loss factor found by the electrical input power obtained from the piezoelectric actuator exhibits similar trend to the value found by the conventional method as well as the theoretical value. In conclusion, the use of SEA for high frequency application of piezoelectric smart structures is Possible. Especially, the input power that is essential for SEA can be found accurately by measuring the electrical input power of the piezoelectric actuator.

  • PDF

The research for appropriate input capacitor selection of PV inverter in Distributed Generation (분산전원 PV 인버터의 적절한 입력커패시터 선정 고찰)

  • Lee, Kyung-Soo;Jung, Young-Seck;Kang, Gi-Hwan;Yu, Gwon-Jong;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.259-261
    • /
    • 2003
  • Generally, there is an input capacitor in front of PV(Photovoltaic) inverter in DG(Distributed Generation). This input capacitor mainly works in order to stabilize the PV output voltage. However, input capacitors, which are being used in domestic market are not well known about their appropriate value and also there is no information for selecting the suitable value of input capacitor. Therefore, the author suggests that the stand-alone PV inverter is considered to analyse appropriate value of input capacitor and then recommends the appropriate value of input capacitor through simulation.

  • PDF

Analysis of the Ultrasonic Cavitation Energy in a Large-Scale Sonoreactor (Lrge-Scale 초음파 반응기에서의 내부 초음파 에너지 분포 분석)

  • Son, Younggyu;Lim, Myunghee;Kim, Wonjang;Khim, Jeehyeong
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.129-134
    • /
    • 2008
  • Ultrasonic cavitational energy distributions were measured in a large-scale sonoreator. In application of 110 and 170 kHz of ultrasound, the cavitational energy was just detected near the transducer module. However 35 and 72 kHz ultrasound made good distributions from the module to the end of the sonoreactor, Especially, 72 kHz ultrasound application showed most stable and highest cavitational energy value through the whole length. In the comparison between input power and cavitational energy, linear relationships were obtained in 35 and 72 kHz and it was anticipated that these results would be used for the optimization of input power for the design of sonoreactors. And three dimensional energy distribution was depicted through the mapping of cavitaional energy. Average energy in the large-scale sonoreactor was estimated as 62.8 W, which was about 40 % of input power.

Scaling of design earthquake ground motions for tall buildings based on drift and input energy demands

  • Takewaki, I.;Tsujimoto, H.
    • Earthquakes and Structures
    • /
    • v.2 no.2
    • /
    • pp.171-187
    • /
    • 2011
  • Rational scaling of design earthquake ground motions for tall buildings is essential for safer, risk-based design of tall buildings. This paper provides the structural designers with an insight for more rational scaling based on drift and input energy demands. Since a resonant sinusoidal motion can be an approximate critical excitation to elastic and inelastic structures under the constraint of acceleration or velocity power, a resonant sinusoidal motion with variable period and duration is used as an input wave of the near-field and far-field ground motions. This enables one to understand clearly the relation of the intensity normalization index of ground motion (maximum acceleration, maximum velocity, acceleration power, velocity power) with the response performance (peak interstory drift, total input energy). It is proved that, when the maximum ground velocity is adopted as the normalization index, the maximum interstory drift exhibits a stable property irrespective of the number of stories. It is further shown that, when the velocity power is adopted as the normalization index, the total input energy exhibits a stable property irrespective of the number of stories. It is finally concluded that the former property on peak drift can hold for the practical design response spectrum-compatible ground motions.

CO2 Laser Scribing Process of Soda Lime Glass (소다석회유리의 CO2 레이저 스크라이빙 가공)

  • Kang, Seung-Gu;Shin, Joong-Han
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.74-81
    • /
    • 2019
  • This study reports the CW $CO_2$ laser scribing of soda lime glass. In this study, scribing experiments are carried out at different laser powers, scan speeds, and focal positions to investigate the effect of the process parameters on the interaction characteristics between a laser beam and glass. In particular, the interaction characteristics are analyzed and described with the input laser energy per unit length. According to the experimental results, the damage threshold for the glass surface was found to exist between 0.072 and 0.08 J/mm. The input laser energy in this region induced partial melting of the surface and grain-shaped cracks. These cracks tended to increase as the input laser energy increased. At the laser input energy larger than 1 J/mm, a huge crack propagating along the scan direction was produced, and the volume below the scribed area was fully melted. The growth of this crack finally resulted in the complete cutting of the glass at the input laser energy above 8 J/mm. It was found that both the width and depth of the scribed line increased with increasing input laser energy. For the beam focusing at the rear surface, the width of the scribed line varied irregularly. This could be ascribed to the increased asymmetry of the beam intensity distribution when the laser beam was focused at the rear surface. Under this condition, a large burr was only produced on one side of the scribed line.

Iterative learning control of nonlinear systems with consideration on input magnitude (입력의 크기를 고려한 비선형 시스템의 반복학습 제어)

  • Choi, Chong-Ho;Jang, Tae-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.165-173
    • /
    • 1996
  • It is not desirable to have too large control input in control systems, because there are usually a limitation for the input magnitude and cost for the input energy. Previous papers in the iterative learning control did not considered on these points. In this paper, an iterative learning control method is proposed for a class of nonlinear systems with consideration on input magnitude by adopting a concept of cost function consisting of the output error and the input magnitude in quadratic form. We proposed a new input update law with an input penalty function. If we choose a reasonable input penalty function, the two control objectives, good command following and small input energy, can be achieved. The characteristics of the proposed method are shown in the simulation examples.

  • PDF

AA STUDY ON ENERGY FLOW OF THE CROP GROWING SUB-SYSTEM IN GUANGDONG

  • Hu, Zemin
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.611-616
    • /
    • 1993
  • On the basis of the data collected from various fields , the energy input output state in the crop-growing sub-system in Guangdong is estimated and analyzed. Results show that the input of the artificial supplementary energy is approximately 201x105 Kcal/ha. year and the input and output ratio equals 1 : 4.73. Measures for improving productivity and speeding up the development of agricultural mechanization in Guangdong are eventually suggested.

  • PDF

The study for selecting an appropriate value of input capacitor in dispersed generation PV inverter

  • Lee K.S.;Jung Y.S.;So J.H.;Yu G.J.;Choi J.H.;Choi J.Y.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.495-498
    • /
    • 2003
  • Most PV (Photovoltaic) inverters are a voltage source type. Normally an input capacitor of this type is connected at the input of an inverter to keep the DC voltage constant. However, it does not seem to be well known how to determine the appropriate value of the capacitor. By developing non-linear transient analysis, the author suggests a guideline fur this approach. An implicit trapezoidal formula was used to do this calculation.

  • PDF

Control of the Residual Vibration of Crane Using Equivalent Input Shaper (등가입력성형기를 이용한 크레인의 잔류진동 제어)

  • Park, Un-Hwan;Lee, Jae-Won;Noh, Sang-Hyun;Yoon, Ji-Sup;Park, Byung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.135-142
    • /
    • 2002
  • Input shaping is a method for reducing residual vibration in computer controlled machines. Vibration is eliminated by convolving a sequence of impulses, an input shaper, with a desired system command to produce a shaped input. This paper shows the shape of sensitivity curve of input shaper as impulse interval T and analysis of robustness for input shaper on the z-plane. And a method is presented for designing equivalent input shaper considering sampling time $T_s$. And then we applied equivalent input shaper to crane system.