• 제목/요약/키워드: Energy harvesting

검색결과 899건 처리시간 0.028초

MAC Protocols for Energy Harvesting Wireless Sensor Networks: Survey

  • Kosunalp, Selahattin
    • ETRI Journal
    • /
    • 제37권4호
    • /
    • pp.804-812
    • /
    • 2015
  • Energy harvesting (EH) technology in the field of wireless sensor networks (WSNs) is gaining increasing popularity through removing the burden of having to replace/recharge depleted energy sources by energy harvester devices. EH provides an alternative source of energy from the surrounding environment; therefore, by exploiting the EH process, WSNs can achieve a perpetual lifetime. In view of this, emphasis is being placed on the design of new medium access control (MAC) protocols that aim to maximize the lifetime of WSNs by using the maximum possible amount of harvested energy instead of saving any residual energy, given that the rate of energy harvested is greater than that which is consumed. Various MAC protocols with the objective of exploiting ambient energy have been proposed for energy-harvesting WSNs (EH-WSNs). In this paper, first, the fundamental properties of EH-WSN architecture are outlined. Then, several MAC protocols proposed for EH-WSNs are presented, describing their operating principles and underlying features. To give an insight into future research directions, open research issues (key ideas) with respect to design trade-offs are discussed at the end of this paper.

보행 시 팔의 교차 운동을 이용한 에너지 하베스팅 재킷 디자인 개발 (Development of Outdoor Jacket Design using Energy Harvesting System by Arm Swing Motion during Walking)

  • 이혜원;이민선;서성은;노정심
    • 한국의류산업학회지
    • /
    • 제21권3호
    • /
    • pp.300-307
    • /
    • 2019
  • This study develops a user centered outdoor jacket capable of energy harvesting based on consumer needs. Jackets are designed for typical outdoor activities such as hiking, trekking, and climbing, integrated with an energy harvesting module that can generate electric power from arm swing in outdoor and daily life walking. Textile based energy generators developed by the previous research of Lee & Roh (2018) were used. A prototype was created based on the arm swing motion experiment for location options and energy harvesting system functions, the simulation by the design sketch, and evaluation of the wearing test by experts. In-depth interviews were later conducted for the prototype with 10 outdoor experts to derive the optimal location of an energy harvesting system in three ways, and the prototype was revised to 5 styles that reflected reviews by experts on function and appearance. Research indicated that the energy harvesting jacket design signifies a user-centered design based on expert interviews and usability evaluation as well as previous research on energy generation and storage device. The jacket is convenient because it combines an energy generator in an optimal position to maximize energy generation with a storage and charging device that can be inserted into various position options for accessibility.

압전나노소재 기반의 플렉서블 에너지 하베스팅 소자 연구동향 (Recent Progress in Flexible Energy Harvesting Devices based on Piezoelectric Nanomaterials)

  • 박귀일
    • 한국분말재료학회지
    • /
    • 제25권3호
    • /
    • pp.263-272
    • /
    • 2018
  • Recent developments in the field of energy harvesting technology that convert ambient energy resources into electricity enable the use of self-powered energy systems in wearable and portable electronic devices without the need for additional external power sources. In particular, piezoelectric-effect-based flexible energy harvesters have drawn much attention because they can guarantee power generation from ubiquitous mechanical and vibrational movements. In response to demand for sustainable, permanent, and remote use of real-life personal electronics, many research groups have investigated flexible piezoelectric energy harvesters (f-PEHs) that employ nanoscaled piezoelectric materials such as nanowires, nanoparticles, nanofibers, and nanotubes. In those attempts, they have proven the feasibility of energy harvesting from tiny periodic mechanical deformations and energy utilization of f-PEH in commercial electronic devices. This review paper provides a brief overview of f-PEH devices based on piezoelectric nanomaterials and summarizes the development history, output performance, and applications.

F$\ddot{o}$rst energy transfer 를 적용한 준고체 DSSC 의 효율향상 (Enhanced Light Harvesting from F$\ddot{o}$rst-type resonance Energy Transfer in the Quasi-Solid State Dye-Sensitized Solar Cells)

  • 천종훈;이정관;양현석;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.117.1-117.1
    • /
    • 2011
  • We have demonstrated Forst-type resonance energy transfer (FRET) in the quasi-solid type dye-sensitized solar cells between organic fluorescence materials as an energy donor doped in polymeric gel electrolyte and ruthenium complex as an energy acceptor on surface of $TiO_2$. The strong spectral overlap of emission/absorption of energy donor and acceptor is required to get high FRET efficiency. The judicious choice of energy donor allows the enhancement of light harvesting characters of energy acceptor in quasi-solid dye sensitized solar cells which increase the power conversion efficiency. The enhanced light harvesting effect by the judicious choice/design of the fluorescence materials and sensitizing dyes permits the enhancement of photovoltaic performance of DSSC.

  • PDF

지하시설물용 센서 네트워크를 위한 에너지 획득 장치 (Energy Harvesting System for Underground Facility Sensor)

  • 권영민;이형수
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2009년도 정보통신설비 학술대회
    • /
    • pp.136-137
    • /
    • 2009
  • In this paper, we introduce UFSN(Underground Facility Sensor Network) in order to build the intelligent management system for the underground facility and drainage in convergence with ubiquitous technologies and propose the energy harvesting system for UFSN.

  • PDF

Harvesting energy from acoustic vibrations of conventional and ultrasonic whistles

  • Hattery, Rebecca;Bilgen, Onur
    • Smart Structures and Systems
    • /
    • 제19권6호
    • /
    • pp.615-624
    • /
    • 2017
  • This paper experimentally investigates the feasibility of harvesting vibration energy from whistles using piezoelectric materials. The end goal of this research is to generate sufficient power from the whistle to power a small radio transmitter to relay a basic signal - for example, a distress call. First, the paper discusses the current literature in energy harvesting from acoustic resonance. Next, the concept of an active whistle is presented. Next, results from energy harvesting experiments conducted on conventional and ultrasonic whistles undergoing human-actuation and actuation by a pressure-regulated air supply are presented. The maximum power density of the conventional whistle actuated by a human at 100 dB sound pressure level is $98.1{\mu}W/cm^3$.

PZT 시스템과 전기 시스템의 최적 설계를 통한 Energy Harvesting 효율 향상 (Energy Harvesting Efficiency Enhancement by Optimal Design of PZT and Electric System)

  • 오재응;김진수;정운창;윤정민;노정준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.925-926
    • /
    • 2014
  • The purpose of this study is intended to improve the efficiency of energy harvesting through the optimal design of the PZT system and the electrical system. To improve the efficiency of energy harvesting, it is necessary to increase the output voltage generated from the PZT. In this study, first the mounting position and shape of the PZT which is attached to the cantilever were optimized. Second electric circuit was optimized by using a series connection of a circuit and the electrical resonance frequency. As a result, we improve the output voltage about 5V.

  • PDF

에너지 하베스팅 무선 센서네트워크을 위한 전력기반 Pipelined-forwarding MAC프로토콜 (A Power-based Pipelined-forwarding MAC Protocol for Energy Harvesting Wireless Sensor Networks)

  • 심규욱;박형근
    • 전기학회논문지
    • /
    • 제68권1호
    • /
    • pp.98-101
    • /
    • 2019
  • In this paper, we propose the power-based pipelined-forwarding MAC protocol which can select relay nodes according to the residual power and energy harvesting rate in EH-WSN (energy-harvesting wireless sensor networks). The proposed MAC follows a pipelined-forwarding scheme in which nodes repeatedly sleep and wake up in an EH-WSN environment and data is continuously transmitted from a high-level node to a low-level node. The sleep interval is adaptively controlled so that nodes with low energy harvesting rate can be charged sufficiently, thereby minimizing the transmission delay and increasing the network lifetime. Simulation shows that the proposed MAC protocol improves the balance of residual power and network lifetime.

머신 러닝 알고리즘을 이용한 역방향 깃발의 에너지 하베스팅 효율 예측 (Prediction of Energy Harvesting Efficiency of an Inverted Flag Using Machine Learning Algorithms)

  • 임세환;박성군
    • 한국가시화정보학회지
    • /
    • 제19권3호
    • /
    • pp.31-38
    • /
    • 2021
  • The energy harvesting system using an inverted flag is analyzed by using an immersed boundary method to consider the fluid and solid interaction. The inverted flag flutters at a lower critical velocity than a conventional flag. A fluttering motion is classified into straight, symmetric, asymmetric, biased, and over flapping modes. The optimal energy harvesting efficiency is observed at the biased flapping mode. Using the three different machine learning algorithms, i.e., artificial neural network, random forest, support vector regression, the energy harvesting efficiency is predicted by taking bending rigidity, inclination angle, and flapping frequency as input variables. The R2 value of the artificial neural network and random forest algorithms is observed to be more than 0.9.

Energy harvesting from conducted electromagnetic interference of fluorescent light for Internet of Things application

  • Hyoung, Chang-Hee;Hwang, Jung-Hwan
    • ETRI Journal
    • /
    • 제44권5호
    • /
    • pp.759-768
    • /
    • 2022
  • A novel energy harvesting technique that uses conducted electromagnetic interference as an energy source is presented. Conducted EMI generated from fluorescent light using a switched-mode power supply was measured and modeled as an equivalent voltage source. Two types of rectifier circuits-a bridge rectifier and a voltage doubler-were used as the harvesting devices for conducted EMI source. The matching networks were designed based on the equivalent model, and the harvested power was improved. The implemented energy harvester produces a regulated power over 68.9 mW and current over 15.1 mA while a regulated voltage can be selected between 3.3 V and 5 V. The proposed system shows the highest harvesting power indoor environment and can provide enough power for the Internet of Things devices.