• Title/Summary/Keyword: Energy generator

Search Result 1,837, Processing Time 0.023 seconds

Grid faults characteristics simulation of inverter-fed induction generator (인버터 부착형 농형 유도발전기의 계통고장특성 모의)

  • Hong, Jitae;Kwon, Soonman;Kim, Chunkyung;Lee, Jongmoo;Cheon, Jongmin;Kim, Hong-Ju;Kim, Heeje
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.43.1-43.1
    • /
    • 2011
  • The detail simulation modeling of fully-fed induction generator is investigated through PC based MATLAB/Simulink environment. Generator's stator currents are controlled by indirect vector control method. In this method, generator side converter controls the maximum excitation (air gap flux) by stator d-axis current and controls generator torque by stator q-axis current. Induction generator speed is controlled by tip speed ratio (TSR) upon the wind speed variations in order to generate the maximum output power. The generator torque model is specified as a 3-blade wind turbine with rating, then, the model is simulated under normal operating condition and three different fault conditions. The matlab model designed for fully-fed induction generator based wind farm provides good performance under normal and grid fault conditions. It provides good results for different pwm techniques and fault conditions except the single-phase line to ground fault, which should be verified with real time data from wind farms.

  • PDF

Study on the Characteristics of an Annular Combustor for a 500 W Class Micro Gas Turbine Generator (500 W 급 마이크로 가스터빈 제너레이터용 환형 연소기의 특성에 관한 연구)

  • Do, Kyu Hyung;Kim, Taehoon;Han, Yong-Shik;Kim, Myung-Bae;Choi, Byung-Il
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.4
    • /
    • pp.14-20
    • /
    • 2014
  • In the present study, an annular combustor for a 500 W class micro gas turbine generator was designed and its characteristics were investigated by using both numerical and experimental methods. For this purpose, geometrical configurations of the annular combustor were determined in the aspect of the aerodynamic and chemical consideration. Also, fluid flow and pressure drop characteristics in the combustor were numerically studied by using commercial tool, FLUENT. Based on the numerical results, the diameter and the angle of air admission holes in the primary zone were chosen to be 2.5 mm and $30^{\circ}$, respectively. Finally, an integrated test unit, which consisted of a compressor, combustor, turbine, and motor/generator, was developed in order to measure the combustor efficiency. As the temperature difference between the combustor inlet and the turbine inlet or the air mass flow rate increased, the combustor efficiency increased and it was over 90% when the air mass flow rate was larger than 7.30 g/s. It was shown that the annular combustor developed in this study met the design requirement for a 500 W class micro gas turbine generator.

An application of LAPO: Optimal design of a stand alone hybrid system consisting of WTG/PV/diesel generator/battery

  • Shiva, Navid;Rahiminejad, Abolfazl;Nematollahi, Amin Foroughi;Vahidi, Behrooz
    • Advances in Energy Research
    • /
    • v.7 no.1
    • /
    • pp.67-84
    • /
    • 2020
  • Given the recent surge of interest towards utilization of renewable distributed energy resources (DER), in particular in remote areas, this paper aims at designing an optimal hybrid system in order to supply loads of a village located in Esfarayen, North Khorasan, Iran. This paper illustrates the optimal design procedure of a standalone hybrid system which consists of Wind Turbine Generator (WTG), Photo Voltaic (PV), Diesel-generator, and Battery denoting as the Energy Storage System (ESS). The WTGs and PVs are considered as the main producers since the site's ambient conditions are suitable for such producers. Moreover, batteries are employed to smooth out the variable outputs of these renewable resources. To this end, whenever the available power generation is higher than the demanded amount, the excess energy will be stored in ESS to be injected into the system in the time of insufficient power generation. Since the standalone system is assumed to have no connection to the upstream network, it must be able to supply the loads without any load curtailment. In this regard, a Diesel-Generator can also be integrated to achieve zero loss of load. The optimal hybrid system design problem is a discrete optimization problem that is solved, here, by means of a recently-introduced meta-heuristic optimization algorithm known as Lightning Attachment Procedure Optimization (LAPO). The results are compared to those of some other methods and discussed in detail. The results also show that the total cost of the designed stand-alone system in 25 years is around 92M€ which is much less than the grid-connected system with the total cost of 205M€. In summary, the obtained simulation results demonstrate the effectiveness of the utilized optimization algorithm in finding the best results, and the designed hybrid system in serving the remote loads.

Capacity Credit and Reasonable ESS Evaluation of Power System Including WTG combined with Battery Energy Storage System (에너지저장장치와 결합한 WTG를 포함하는 전력계통의 Capacity Credit 평가 및 ESS 적정규모 평가방안)

  • Oh, Ungjin;Lee, Yeonchan;Choi, Jaeseok;Lim, Jintaek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.923-933
    • /
    • 2016
  • This paper proposes a new method for evaluating Effective Load Carrying Capability(ELCC) and capacity credit(C.C.) of power system including Wind Turbine Generator(WTG) combined with Battery Energy Storage System(BESS). WTG can only generate electricity power when the fuel(wind) is available. Because of fluctuation of wind speed, WTG generates intermittent power. In view point of reliability of power system, intermittent power of WTG is similar with probabilistic characteristics based on power on-off due to mechanical availability of conventional generator. Therefore, high penetration of WTG will occur difficulties in power operation. The high penetration of numerous and large capacity WTG can make risk to power system adequacy, quality and stability. Therefore, the penetration of WTG is limited in the world. In recent, it is expected that BESS installed at wind farms may smooth the wind power fluctuation. This study develops a new method to assess how much is penetration of WTG able to extended when Wind Turbine Generator(WTG) is combined with Battery Energy Storage System(BESS). In this paper, the assessment equation of capacity credit of WTG combined with BESS is formulated newly. The simulation program, is called GNRL_ESS, is developed in this study. This paper demonstrates a various case studies of ELCC and capacity credit(C.C.) of power system containing WTG combined with BESS using model system as similar as Jeju island power system. The case studies demonstrate that not only reasonable BESS capacity for a WTG but also permissible penetration percent of WTG combined with BESS and reasonable WTG capacity for a BESS can be decided.

A Study on Economic Evaluations of ESS Load Test Device for Field Load Test in Fire-fighting Emergency Generator Systems (소방용 비상발전기의 현장부하시험을 위한 ESS 부하시험장치의 경제성평가에 관한 연구)

  • Choi, Seung-Kyou
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.380-386
    • /
    • 2020
  • The ESS load test device (ELTD) can store and exchange electrical energy during the load test of an emergency generator. On the other hand, it is difficult to commercialize ELTDs based on Li-ion batteries because of the high initial cost, which is higher than a load bank test. If the trade of electrical energy stored in ELTD during the test of an emergency generator is considered, it may be possible to commercialize the ELTD. Therefore, this paper proposes an economic model of ELTD composed of the costs and benefits by considering electrical energy trade to perform accurately economic evaluations of an ELTD. From the simulation results of the economic evaluations of an ELTD and the load bank method, it was found that the commercialization of ELTD is possible when the trade in electrical energy in ELTDs is considered.

Development of One Day-Ahead Renewable Energy Generation Assessment System in South Korea (우리나라 비중앙급전발전기의 하루전 출력 예측시스템 개발)

  • Lee, Yeon-Chan;Lim, Jin-Taek;Oh, Ung-Jin;N.Do, Duy-Phuong;Choi, Jae-Seok;Kim, Jin-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.505-514
    • /
    • 2015
  • This paper proposes a probabilistic generation assessment model of renewable energy generators(REGs) considering uncertainty of resources, mainly focused on Wind Turbine Generator(WTG) and Solar Cell Generator(SCG) which are dispersed widely in South Korea The proposed numerical analysis method assesses the one day-ahead generation by combining equivalent generation characteristics function and probabilistic distribution function of wind speed(WS) and solar radiation(SR) resources. The equivalent generation functions(EGFs) of the wind and solar farms are established by grouping a lot of the farms appropriately centered on Weather Measurement Station(WMS). First, the EGFs are assessed by using regression analysis method based on typical least square method from the recorded actual generation data and historical resources(WS and SR). Second, the generation of the REGs is assessed by adding the one day-ahead resources forecast, announced by WMS, to the EGFs which are formulated as third order degree polynomials using the regression analysis. Third, a Renewable Energy Generation Assessment System(REGAS) including D/B of recorded actual generation data and historical resources is developed using the model and algorithm predicting one day-ahead power output of renewable energy generators.

Design of Wave Energy Extractor with a Linear Electric Generator -Part I. Design of a Wave Power Buoy (선형발전기가 탑재된 파랑에너지 추출장치 설계 -I. 파력 부이 설계)

  • Kim, Jeong Rok;Bae, Yoon Hyeok;Cho, Il Hyoung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.146-152
    • /
    • 2014
  • Design procedure of WEC (wave energy converter) using the heaving motion of a floating cylinder-type buoy coupled with LEG (linear electric generator) system is introduced. It is seen that the maximum power can actually be obtained at the optimal conditions ($c_{PTO}=b_T$, ${\omega}={\omega}_N$). Then, based on the developed theory, several design strategies are proposed to further enhance the maximum PTO (power take off), which includes the intentional mismatching with the heave natural frequency, which is 15% higher value than the peak frequency of input velocity spectrum. By using the intentional mismatching strategy, the generated power is actually increased and the corresponding draft as well as the required PTO damping value is significantly reduced, which is a big advantage in manufacturing the WEC with practical LEG (linear electric generator) system.

Determining the Optimal Capacities of Distributed Generators Installed in A Stand-alone Microgrid Power System (독립형 마이크로그리드 내 분산전원별 최적용량 결정 방법)

  • Ko, Eun-Young;Baek, Ja-Hyun;Kang, Tae-Hyuk;Han, Dong-Hwa;Cho, Soo-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.239-246
    • /
    • 2016
  • In recent years, the power demand has been increasing steadily and the occurrence of maximum power demand has been moving from the summer season to the winter season in Korea. And since the control of electric power supply and demand is more important under those situations, a micro-grid system began to emerge as a keyword for the sTable operation of electric power system. A micro-gird power system is composed of various kinds of distributed generators(DG) such as small diesel generator, wind turbine, photo-voltaic generator and energy storage system(ESS). This paper introduces a method to determine the optimal capacities of the distributed generators which are installed in a stand-alone type of microgrid power system based on the fundamental proportion of diesel generator. At first, the fundamental proportion of diesel generator will be determined by changing from 0 to 50 percent. And then we will optimize the capacities of renewable energy resources and ESS according to load patterns. Lastly, after recalculating the capacity of ESS with consideration for SOC constraints, the optimal capacities of distributed generators will be decided.

Characteristics Test and Model Parameter Determination of Generator/Excitation System of Yeongdong Unit 1 due to Conversion of Renewable Generation Fuel (신재생 발전 연료전환에 따른 영동1호기 발전기/제어계 특성시험 및 모델정수 도출)

  • Mun, Jeong-Min;Lee, Tae-kyu;Shin, Woo-Ju;Kim, Jeong-Uk
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.586-593
    • /
    • 2019
  • In this paper, we introduce the wood pellet electric power generation system, which is an eco - friendly solid fuel processed pure wood, which is one of the largest capacity renewable power fuels in Korea, The Ministry of Commerce, Industry and Energy notified the Ministry of Land, Infrastructure, Transport and Tourism of the Ministry of Land, Transport and Maritime Affairs of the Ministry of Land, Transport and Maritime Affairs. Derived and validated. It is confirmed that the performance of the generator and the voltage control characteristics of excitation system are good even for the change of generator fuel. It can contribute to future reference at the plant that wants to replace fossil fuels with renewable fuels.