• Title/Summary/Keyword: Energy generator

Search Result 1,842, Processing Time 0.024 seconds

Research on rapid source term estimation in nuclear accident emergency decision for pressurized water reactor based on Bayesian network

  • Wu, Guohua;Tong, Jiejuan;Zhang, Liguo;Yuan, Diping;Xiao, Yiqing
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2534-2546
    • /
    • 2021
  • Nuclear emergency preparedness and response is an essential part to ensure the safety of nuclear power plant (NPP). Key support technologies of nuclear emergency decision-making usually consist of accident diagnosis, source term estimation, accident consequence assessment, and protective action recommendation. Source term estimation is almost the most difficult part among them. For example, bad communication, incomplete information, as well as complicated accident scenario make it hard to determine the reactor status and estimate the source term timely in the Fukushima accident. Subsequently, it leads to the hard decision on how to take appropriate emergency response actions. Hence, this paper aims to develop a method for rapid source term estimation to support nuclear emergency decision making in pressurized water reactor NPP. The method aims to make our knowledge on NPP provide better support nuclear emergency. Firstly, this paper studies how to build a Bayesian network model for the NPP based on professional knowledge and engineering knowledge. This paper presents a method transforming the PRA model (event trees and fault trees) into a corresponding Bayesian network model. To solve the problem that some physical phenomena which are modeled as pivotal events in level 2 PRA, cannot find sensors associated directly with their occurrence, a weighted assignment approach based on expert assessment is proposed in this paper. Secondly, the monitoring data of NPP are provided to the Bayesian network model, the real-time status of pivotal events and initiating events can be determined based on the junction tree algorithm. Thirdly, since PRA knowledge can link the accident sequences to the possible release categories, the proposed method is capable to find the most likely release category for the candidate accidents scenarios, namely the source term. The probabilities of possible accident sequences and the source term are calculated. Finally, the prototype software is checked against several sets of accident scenario data which are generated by the simulator of AP1000-NPP, including large loss of coolant accident, loss of main feedwater, main steam line break, and steam generator tube rupture. The results show that the proposed method for rapid source term estimation under nuclear emergency decision making is promising.

Development of Anion Exchange Membrane based on Crosslinked Poly(2,6-dimethyl-1,4-phenylene oxide) for Alkaline Fuel Cell Application (화학적 가교를 이용한 Poly(2,6-dimethyl-1,4-phenylene oxde)계 음이온 교환막의 제조 및 알칼리 연료전지용 특성평가)

  • Sung, Seounghwa;Lee, Boryeon;Choi, Ook;Kim, Tae-Hyun
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.173-182
    • /
    • 2019
  • Much research has been made for finding new and eco-friendly alternative sources of energy to solve the problems related with the pollution caused by emissions of greenhouse gases such as carbon dioxide as the use of fossil fuels increases worldwide. Among them, fuel cells draws particular interests as an eco-friendly energy generator because only water is obtained as a by-product. Anion exchange membrane-based alkaline fuel cell (AEMFC) that uses anion exchange membrane as an electrolyte is of increased interest recently because of its advantages in using low-cost metal catalyst unlike the PEMFC (potton exchange membrane fuel cell) due to the high-catalyst activity in alkaline conditions. The main properties required as an anion exchange membrane are high hydroxide conductivity and chemical stability at high pH. Recently we reported a chemically crosslinked poly(2-dimethyl-1,4-phenylene oxide) (PPO) by reacting PPO with N,N,N',N'-tetramethyl-1,6-hexanediamine as novel anion exchange membranes. In the current work, we further developed the same crosslinked polymer but having enhanced physicochemical properties, including higher conductivity, increased mechanical and dimensional stabilities by using the PPO with a higher molecular weight and also by increasing the crosslinking density. The obtained polymer membrane also showed a good cell performance.

Hybrid Energy Storage System with Emergency Power Function of Standardization Technology (비상전원 기능을 갖는 하이브리드 에너지저장시스템 표준화 기술)

  • Hong, Kyungjin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.187-192
    • /
    • 2019
  • Hybrid power storage system with emergency power function for demand management and power outage minimizes the investment cost in the building of buildings and factories requiring emergency power generation facilities, We propose a new business model by developing technology that can secure economical efficiency by reducing power cost at all times. Normally, system power is supplied to load through STS (Static Transfer Switch), and PCS is connected to system in parallel to perform demand management. In order to efficiently operate the electric power through demand forecasting, the EMS issues a charge / discharge command to the ESS as a PMS (Power Management System), and the PMS transmits the command to the PCS controller to operate the system. During the power outage, the STS is rapidly disengaged from the system, and the PCS becomes an independent power supply and can supply constant voltage / constant frequency power to the load side. Therefore, it is possible to secure reliability through verification of actual system linkage and independent operation performance of hybrid ESS, By enabling low-carbon green growth technology to operate in conjunction with an efficient grid, it is possible to improve irregular power quality and contribute to peak load by generating renewable energy through ESS linkage. In addition, the ESS is replacing the frequency follow-up reserve, which is currently under the charge of coal-fired power generation, and thus it is anticipated that the operation cost of the LNG generator with high fuel cost can be reduced.

A Study on Design of Wind Blade with Rated Capacity of 50kW (50kW 풍력블레이드 설계에 관한 연구)

  • Kim, Sang-Man;Moon, Chae-Joo;Jung, Gweon-Sung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.485-492
    • /
    • 2021
  • The wind turbines with a rated capacity of 50kW or less are generally considered as small class. Small wind turbines are an attractive alternative for off-grid power system and electric home appliances, both as stand-alone application and in combination with other energy technologies such as energy storage system, photovoltaic, small hydro or diesel engines. The research objective is to develop the 50kW scale wind turbine blades in ways that resemble as closely as possible with the construction and methods of utility scale turbine blade manufacturing. The mold process based on wooden form is employed to create a hollow, multi-piece, lightweight design using carbon fiber and fiberglass with an epoxy based resin. A hand layup prototyping method is developed using high density foam molds that allows short cycle time between design iterations of aerodynamic platforms. A production process of five blades is manufactured and key components of the blade are tested by IEC 61400-23 to verify the appropriateness of the design. Also, wind system with developed blades is tested by IEC 61400-12 to verify the performance characteristics. The results of blade and turbine system test showed the available design conditions for commercial operation.

Study of Imaging of Submarine Bubble Plume with Reverse Time Migration (역시간 구조보정을 활용한 해저 기포플룸 영상화 연구)

  • Dawoon Lee;Wookeen Chung;Won-Ki Kim;Ho Seuk Bae
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.1
    • /
    • pp.8-17
    • /
    • 2023
  • Various sources, such as wind, waves, ships, and gas leaks from the seafloor, forms bubbles in the ocean. Underwater bubbles cause signal scattering, considerably affecting acoustic measurements. This characteristic of bubbles is used to block underwater noise by attenuating the intensity of the propagated signal. Recently, researchers have been studying the large-scale release of methane gas as bubble plumes from the seabed. Understanding the physical properties and distribution of bubble plumes is crucial for studying the relation between leaked methane gas and climate change. Therefore, a water tank experiment was conducted to estimate the distribution of bubble plumes using seismic imaging techniques and acoustic signals obtained from artificially generated bubbles using a bubble generator. Reverse time migration was applied to image the bubble plumes while the acquired acoustic envelope signal was used to effectively estimate bubble distribution. Imaging results were compared with optical camera images to verify the estimated bubble distribution. The water tank experiment confirmed that the proposed system could successfully image the distribution of bubble plumes using reverse time migration and the envelope signal. The experiment showed that the scattering signal of artificial bubble plumes can be used for seismic imaging.

Research on the use of Therapeutic Linear accelerator Quality Control using EPR/alanine Dosimeter (EPR/알라닌 선량계를 이용한 치료용 선형가속기 정도관리 활용 연구)

  • Yoon-Ha Kim;Hyo-Jin Kim;Yeong-Rok Kang;Dong-Yeon Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.3
    • /
    • pp.239-248
    • /
    • 2024
  • Radiation therapy uses high energy, which can have side effects on the human body. Therefore, it is important to ensure that the appropriate dose is set for irradiation and to have confidence in the radiation produced by the generator. The EPR/Alanine dosimetry system is characterized by water equivalence, dose response linearity, and low fading, which makes it useful for quality control of radiation therapy equipment. In this study, we compared the signal and dose response curves of EPR/Alanine dosimetry by mass of alanine using 6 MV energy of a LINAC. An alanine dosimeter and EPR spectrometer from Burker, and a LINAC from Elekta, were used. A dose response curve and a 1st order regression equation were constructed from the irradiated dose and the EPR signal from the alanine dosimeter. We compared the signal magnitude and dose response curve with mass and checked the confidence through the measurement uncertainty of the dose response curve. As a result, it was found that the magnitude of the EPR signal increased by about 1.3 times at 64.5 mg, and the sensitivity of the dose response curve increased as the mass increased. The measurement uncertainty was evaluated to be between 5.84 % and 8.93 %. Through this study, it is expected that the EPR/alanine dosimetry system can be applied to the quality assurance and quality control of a LINAC.

A Study on the Validity of Rural Type Low Carbon Green Village Through Case Analysis (사례분석을 통한 농촌형 저탄소 녹색마을 타당성 검토)

  • Do, In-Hwan;Hwang, Eun-Jin;Hong, Soo-Youl;Phae, Chae-Gun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.12
    • /
    • pp.913-921
    • /
    • 2011
  • This study examined the overall feasibility of low carbon green village formed in rural area. The check method is analyzing its environmental and economic feasibility and energy self-reliance. The biomass of the villages was set as 28 ton/day of livestock feces and 2 ton/day of cut fruit tree branches which make up the total of 30 ton/day. The facility consisted of a bio gasfication facility using wet (livestock feces) biomass and combined heat power generator, composting facility and wood boiler using dry (cut fruit tree branches) biomass. When operating the system, 540,540 kWh/yr of electricity and 1,762 Gcal/yr of heat energy was produced. The region's electricity energy and heat energy self-reliance rate will be 100%. The economic feasibility was found as a loss of 140 million won where the facility installation cost is 5.04 billion won, operation cost is 485.09 million won and profit is 337.12 million won. There will be a loss of about 2.2 billion won in 15 years but in the environmental analysis, it was found that crude replacement effect is about 178 million won, greenhouse gas reduction effect is about 92 million won making up the total environmental benefit of 270 million won. This means, there will be a yearly profit of about 130 million won. In terms of its environmental and economic feasibility and energy self-reliance, this project seemed to be a feasible project in overall even if it manages to get help from the government or local government.

Optimal Operation of Gas Engine for Biogas Plant in Sewage Treatment Plant (하수처리장 바이오가스 플랜트의 가스엔진 최적 운영 방안)

  • Kim, Gill Jung;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.28 no.2
    • /
    • pp.18-35
    • /
    • 2019
  • The Korea District Heating Corporation operates a gas engine generator with a capacity of $4500m^3 /day$ of biogas generated from the sewage treatment plant of the Nanji Water Recycling Center and 1,500 kW. However, the actual operation experience of the biogas power plant is insufficient, and due to lack of accumulated technology and know-how, frequent breakdown and stoppage of the gas engine causes a lot of economic loss. Therefore, it is necessary to prepare technical fundamental measures for stable operation of the power plant In this study, a series of process problems of the gas engine plant using the biogas generated in the sewage treatment plant of the Nanji Water Recovery Center were identified and the optimization of the actual operation was made by minimizing the problems in each step. In order to purify the gas, which is the main cause of the failure stop, the conditions for establishing the quality standard of the adsorption capacity of the activated carbon were established through the analysis of the components and the adsorption test for the active carbon being used at present. In addition, the system was applied to actual operation by applying standards for replacement cycle of activated carbon to minimize impurities, strengthening measurement period of hydrogen sulfide, localization of activated carbon, and strengthening and improving the operation standards of the plant. As a result, the operating performance of gas engine # 1 was increased by 530% and the operation of the second engine was increased by 250%. In addition, improvement of vent line equipment has reduced work process and increased normal operation time and operation rate. In terms of economic efficiency, it also showed a sales increase of KRW 77,000 / year. By applying the strengthening and improvement measures of operating standards, it is possible to reduce the stoppage of the biogas plant, increase the utilization rate, It is judged to be an operational plan.

Stand-alone Real-time Healthcare Monitoring Driven by Integration of Both Triboelectric and Electro-magnetic Effects (실시간 헬스케어 모니터링의 독립 구동을 위한 접촉대전 발전과 전자기 발전 원리의 융합)

  • Cho, Sumin;Joung, Yoonsu;Kim, Hyeonsu;Park, Minseok;Lee, Donghan;Kam, Dongik;Jang, Sunmin;Ra, Yoonsang;Cha, Kyoung Je;Kim, Hyung Woo;Seo, Kyoung Duck;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.86-92
    • /
    • 2022
  • Recently, the bio-healthcare market is enlarging worldwide due to various reasons such as the COVID-19 pandemic. Among them, biometric measurement and analysis technology are expected to bring about future technological innovation and socio-economic ripple effect. Existing systems require a large-capacity battery to drive signal processing, wireless transmission part, and an operating system in the process. However, due to the limitation of the battery capacity, it causes a spatio-temporal limitation on the use of the device. This limitation can act as a cause for the disconnection of data required for the user's health care monitoring, so it is one of the major obstacles of the health care device. In this study, we report the concept of a standalone healthcare monitoring module, which is based on both triboelectric effects and electromagnetic effects, by converting biomechanical energy into suitable electric energy. The proposed system can be operated independently without an external power source. In particular, the wireless foot pressure measurement monitoring system, which is rationally designed triboelectric sensor (TES), can recognize the user's walking habits through foot pressure measurement. By applying the triboelectric effects to the contact-separation behavior that occurs during walking, an effective foot pressure sensor was made, the performance of the sensor was verified through an electrical output signal according to the pressure, and its dynamic behavior is measured through a signal processing circuit using a capacitor. In addition, the biomechanical energy dissipated during walking is harvested as electrical energy by using the electromagnetic induction effect to be used as a power source for wireless transmission and signal processing. Therefore, the proposed system has a great potential to reduce the inconvenience of charging caused by limited battery capacity and to overcome the problem of data disconnection.

Stability of $^{188}Re$ Labeled Antibody for Radioimmunotherapy and the Effect of Stabilizing Agents (방사면역치료용 $^{188}Re$ 표지 항체의 안정성과 안정제의 효과)

  • Chang, Young-Soo;Kim, Bo-Kwang;Jeong, Jae-Min;Chung, June-Key;Lee, Seung-Jin;Lee, Dong-Soo;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.3
    • /
    • pp.195-202
    • /
    • 2002
  • Purpose: For clinical application of beta-emitter labeled antibody, high specific activity is imporiant. Carrier-free $^{188}Re$ from $^{188}W/^{188}Re$ generator is an ideal radionuclide for this purpose. However, low stability of $^{188}Re$ labeled antibody, especially in high specific activity, due to radiolytic decomposition by high energy (2.1 MeV) beta ray was problem. We studied the stability of $^{188}Re$ labeled antibody, and stabilizing effect of several stabilizers. Materials and Methods: Pre-reduced monoclonal antibody (CEA79.4) was labeled with $^{188}Re$ by incubating with generator-eluted $^{188}Re-perrhenate$ in the presence of stannous tartrate for 2 hr at room temperature. Radiochemical purity of each preparation was determined by chromatography. Human serum albumin was added to the labeled antibodies (2%). Stability of $^{188}Re-CEA79.4$ was investigated in the presence of ascorbic acid, ethanol, of Tween 80 as stabilizing agents. Results: Labeling efficiencies were $88{\pm}4%\;(n=12)$. Specific activities of $1.25{\sim}4.77MBq/{\mu}g$ were obtained. If stored after purging with $N_2$, all the preparations were stable for 10 hr. However, stability decreased in the presence of air. Perrhenate and $^{188}Re-tartrate$ was major impurity in declined preparation. colloid-formation was not a significant problem in all cases. Addition of ascorbic acid stabilized the labeled antibodies either under $N_2$ or under air by reducing the formation of perrhenate. Conclusion: High specific activity $^{188}Re$ labeled antibody is unstable, especially, in the presence of oxygen. Addition of ascorbic acid increased the stability.