• Title/Summary/Keyword: Energy distribution

Search Result 5,762, Processing Time 0.039 seconds

Effect of Modified Casein to Whey Protein Ratio on Dispersion Stability, Protein Quality and Body Composition in Rats

  • Jeong, Eun Woo;Park, Gyu Ri;Kim, Jiyun;Yun, So-Yul;Imm, Jee-Young;Lee, Hyeon Gyu
    • Food Science of Animal Resources
    • /
    • v.41 no.5
    • /
    • pp.855-868
    • /
    • 2021
  • The present study was designed to investigate the effects of protein formula with different casein (C) to whey protein (W) ratios on dispersion stability, protein quality and body composition in rats. Modification of the casein to whey protein (CW) ratio affected the extent of protein aggregation, and heated CW-2:8 showed a significantly increased larger particle (>100 ㎛) size distribution. The largest protein aggregates were formed by whey protein self-aggregation. There were no significant differences in protein aggregation when the CW ratios changed from 10:0 to 5:5. Based on the protein quality assessment (CW-10:0, CW-8:2, CW-5:5, and CW-2:8) for four weeks, CW-10:0 showed a significantly higher feed intake (p<0.05), but the high proportion of whey protein in the diet (CW-5:5 and CW-2:8) increased the feed efficiency ratio, protein efficiency ratio, and net protein ratio compared to other groups. Similarly, CW-2:8 showed greater true digestibility compared to other groups. No significant differences in fat mass and lean mass analyzed by dual-energy x-ray absorptiometry were observed. A significant difference was found in the bone mineral density between the CW-10:0 and CW-2:8 groups (p<0.05), but no difference was observed among the other groups. Based on the results, CW-5:5 improved protein quality without causing protein instability problems in the dispersion.

Using the Health Belief Model to Assess Graduate Emotional Wellness: An Empirical Study from Malaysia

  • DAUD, Salina;WAN HANAFI, Wan Noordiana;SOHAIL, M. Sadiq;WAN ABDULLAH, Wan Mohammad Taufik;AHMAD, Nurul Nadiah
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.8
    • /
    • pp.19-27
    • /
    • 2022
  • Graduate well-being is foundational to academic success, and they are becoming more and more vulnerable. This is as they suffer from mental health challenges like anxiety and depression at rates six times higher than the general population. When the nature of their educational experience changes, such as when they had to stay in their homes during the COVID-19 pandemic, the stress on their mental health increases. The number of cases of emotional wellness among university students is considered a public health problem, but these young people often do not seek appropriate treatment. This study, therefore, aims to identify the influence of health behavior factors on graduate emotional wellness. This study used a questionnaire with a cross-sectional survey design. Questionnaires were distributed online to graduates from selected Private and Public Higher Education Institutions in Malaysia. The Partial Least Square Equation Model (PLS-SEM) was used to analyze the results of the study. Overall findings indicate that the health behavior factors have a significant influence on graduate emotional wellness. The findings from this study will benefit the management, academics, counselors, and other entities, including the Students' Representative Council, in identifying ways to improve services and upgrade the necessary facilities to enhance the graduate's emotional wellness.

Changes in milk production and blood metabolism of lactating dairy cows fed Saccharomyces cerevisiae culture fluid under heat stress

  • Lim, Dong-Hyun;Han, Man-Hye;Ki, Kwang-Seok;Kim, Tae-Il;Park, Sung-Min;Kim, Dong-Hyeon;Kim, Younghoon
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1433-1442
    • /
    • 2021
  • In this study, Saccharomyces cerevisiae culture fluid (SCCF) has been added to a diet of lactating dairy cows to attempt to improve the ruminal fermentation and potentially increase the dry matter intake (DMI) and milk yield. This study was conducted to investigate the effects of SCCF on the milk yield and blood biochemistry in lactating cows during the summer. Twenty-four Holstein dairy cows were randomly assigned to one of four treatments: (1) total mixed ration (TMR-1) (Control); (2) TMR-1 supplemented with SCCF (T1); (3) TMR-2 (containing alfalfa hay) (T2); and (4) TMR-2 supplemented with SCCF (T3). SCCF (5 ml/head, 2.0×107 CFU/mL) was mixed with TMRs daily before feeding to dairy cows. The mean daily temperature-humidity index (THI) during this trial was 76.92 ± 0.51 on average and ranged from 73.04 to 81.19. For particle size distribution, TMR-2 had a lower >19 mm fraction and a higher 8-9 mm fraction than TMR-1 (p < 0.05). The type of TMR did not influence the DMI, body weight (BW), milk yield and composition, or blood metabolites. The milk yield and composition were not affected by the SCCF supplementation, but somatic cell counts were reduced by feeding SCCF (p < 0.05). Feeding SCCF significantly increased the DMI but did not affect the milk yield of dairy cows. The NEFA concentration was slightly decreased compared to that in the control and T2 groups without SCCF. Feeding a yeast culture of S. cerevisiae may improve the feed intake, milk quality and energy balance of dairy cows under heat stress.

Analysis Study of Diaphragm Wall by Construction Process of Large Underground Space for Complex Plant Installation (복합플랜트 설치를 위한 지하 대공간 건설 공정별 연속벽체 해석 연구)

  • Kim, Sewon;Park, JunKyung;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.11-19
    • /
    • 2022
  • Underground environmental infrastructure and energy production facilities, which are recognized as avoidable facilities such as landfills, are emerging as an important social issue due to urbanization and economic growth. It is necessary to analyze the stability according to various ground conditions and load conditions for the construction of large-scale underground complex plants. In this paper, horizontal/vertical displacement and stress distribution according to the load condition and construction process were analyzed using finite element analysis (FEM), Based on the analysis results of various conditions, factors to be considered in the detailed design and construction of the underground complex plant were reviewed and the implications on design factors (Intermediate wall installation status, Pre-reinforcing area, etc.) for underground large space construction were derived.

An approach to minimize reactivity penalty of Gd2O3 burnable absorber at the early stage of fuel burnup in Pressurized Water Reactor

  • Nabila, Umme Mahbuba;Sahadath, Md. Hossain;Hossain, Md. Towhid;Reza, Farshid
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3516-3525
    • /
    • 2022
  • The high capture cross-section (𝜎c) of Gadolinium (Gd-155 and Gd-157) causes reactivity penalty and swing at the initial stage of fuel burnup in Pressurized Water Reactor (PWR). The present study is concerned with the feasibility of the combination of mixed burnable poison with both low and high 𝜎c as an approach to minimize these effects. Two considered reference designs are fuel assemblies with 24 IBA rods of Gd2O3 and Er2O3 respectively. Models comprise nuclear fuel with a homogeneous mixture of Er2O3, AmO2, SmO2, and HfO2 with Gd2O3 as well as the coating of PaO2 and ZrB2 on the Gd2O3 pellet's outer surface. The infinite multiplication factor was determined and reactivity was calculated considering 3% neutron leakage rate. All models except Er2O3 and SmO2 showed expected results namely higher values of these parameters than the reference design of Gd2O3 at the early burnup period. The highest value was found for the model of PaO2 and Gd2O3 followed by ZrB2 and HfO2. The cycle burnup, discharge burnup, and cycle length for three batch refueling were calculated using Linear Reactivity Model (LRM). The pin power distribution, energy-dependent neutron flux and Fuel Temperature Coefficient (FTC) were also studied. An optimization of model 1 was carried out to investigate effects of different isotopic compositions of Gd2O3 and absorber coating thickness.

An Innovative shear link as damper: an experimental and numerical study

  • Ghamari, Ali;Kim, Young-Ju;Bae, Jaehoon
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.539-552
    • /
    • 2022
  • Concentrically braced frames (CBFs) possess high stiffness and strength against lateral loads; however, they suffer from low energy absorption capacity against seismic loads due to the susceptibility of CBF diagonal elements to bucking under compression loading. To address this problem, in this study, an innovative damper was proposed and investigated experimentally and numerically. The proposed damper comprises main plates and includes a flange plate angled at θ and a trapezius-shaped web plate surrounded by the plate at the top and bottom sections. To investigate the damper behaviour, dampers with θ = 0°, 30°, 45°, 60°, and 90° were evaluated with different flange plate thicknesses of 10, 15, 20, 25 and 30 mm. Dampers with θ = 0° and 90° create rectangular-shaped and I-shaped shear links, respectively. The results indicate that the damper with θ = 30° exhibits better performance in terms of ultimate strength, stiffness, overstrength, and distribution stress over the damper as compared to dampers with other angles. The hysteresis curves of the dampers confirm that the proposed damper acts as a ductile fuse. Furthermore, the web and flange plates contribute to the shear resistance, with the flange carrying approximately 80% and 10% of the shear force for dampers with θ = 30° and 90°, respectively. Moreover, dampers that have a larger flange-plate shear strength than the shear strength of the web exhibit behaviours in linear and nonlinear zones. In addition, the over-strength obtained for the damper was greater than 1.5 (proposed by AISC for shear links). Relevant relationships are determined to predict and design the damper and the elements outside it.

Bond behavior between concrete and prefabricated Ultra High-Performance Fiber-Reinforced Concrete (UHPFRC) plates

  • Mansour, Walid;Sakr, Mohammed A.;Seleemah, Ayman A.;Tayeh, Bassam A.;Khalifa, Tarek M.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.305-316
    • /
    • 2022
  • Externally bonded ultrahigh performance fiber-reinforced concrete (UHPFRC) is commonly used as a strengthening material for reinforced concrete (RC) structures. This study reports the results of an experimental program investigating the bonding behavior between concrete and prefabricated UHPFRC plates. The overall experimental program is consisting of five RC specimens, which are strengthened using the different lengths and widths of prefabricated UHPFRC plates. These specimens were analyzed using the pull-pull double-shear test. The performance of each strengthened specimen is presented, discussed and compared in terms of failure mode, maximum load, load-slip relationship, fracture energy and strain distribution. Specimen C-25-160-300 which bonded along the whole width of 160 mm recorded the highest maximum load (109.2 kN) among all the analysed specimens. Moreover, a 3D numerical finite element model (FEM) is proposed to simulate the bond behavior between concrete and UHPFRC plates. Moreover, this study reviews the analytical models that can predict the relationship between the maximum bond stress and slip for strengthened concrete elements. The proposed FEM is verified against the experimental program and then used to test 36 RC specimens strengthened with prefabricated UHPFRC plates with different concrete grades and UHPFRC plate widths. The obtained results together with the review of analytical models helped in the formation of a design equation for estimating the bond stress between concrete and prefabricated UHPFRC plates.

Research on no coal pillar protection technology in a double lane with pre-set isolation wall

  • Liu, Hui;Li, Xuelong;Gao Xin;Long, Kun;Chen, Peng
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.537-550
    • /
    • 2021
  • There are various technical problems need to be solved in the construction process of pre-setting an isolation wall into a double lane in the outburst prone mine. This study presents a methodology that pre-setting an isolation wall into a double lane without a coal pillar. This requires the excavation of two small section roadways to dig a wide section roadway, followed by construction of the separation wall. During this process the connecting lane is reserved. In order to ensure the stability of the separation wall, the required bearing capacity of the isolation wall is 4.66 MN/m and the deformation of the isolation wall is approximately 25 cm. To reduce the difficulty of implementing support the roadway is driven by 5 m/d. After the construction of the separation wall, the left side coal wall is brushed 1.5 m to make the width of the gas roadway reach 2.5 m and the roadway support utilizes anchor rod, ladder beam, anchor cable beam and net configuration. During construction, the concrete pump and removable self-propelled hydraulic wall mold are used to pump and pour the concrete of the isolation wall. In the process of mining, the stress distribution of coal body and isolation wall is detected and measured on site. The results demonstrate that the deformation of the surrounding rock of roadway and separation of roof in the roadway is small. The stress of the bolt and anchor cable is within equipment tolerance validating their selection. The roadway is well supported and the intended goal is achieved. The methodology can be used for reference for similar mine gas control.

A Study on the Priority of Site Selection for Hydrogen Vehicle Charging Facilities in Seoul Using a Market Demand Prediction Model (시장수요예측 모델을 활용한 서울시 수소차 충전시설의 입지선정 우선순위에 관한 연구)

  • Jin Sick, Kim;Kook Jin, Jang;Joo Yeoun, Lee;Myoung Sug, Jung
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.140-148
    • /
    • 2022
  • Hydrogen is expected to be widely applied in most sectors within the current energy system, such as transportation and logistics, and is expected to be economically and technologically utilized as a power source to achieve vehiclebon emission reduction. In particular, the construction of hydrogen charging station infrastructure will not only support the distribution of hydrogen electric vehicles, but also play an important role in building a hydrogen logistics system. Therefore, This paper suggest additional charging infrastructure areas in Seoul with a focus on supply according to the annual average growth rate (CAGR), centering on Seoul, where hydrogen vehicles are most widely distributed. As of February 2022, hydrogen charging infrastructures were installed in Gangseo-gu, Gangdong-gu, Mapo-gu, Jung-gu, and Seocho-gu in downtown Seoul. Next, looking at the number of hydrogen vehicles by administrative dong in Seoul from 2018 to 2022, Seocho-gu has the most with 246 as of 2022, and Dongjak-gu has the highest average growth rate of 215.4% with a CAGR of 215.4%. Therefore, as a result of CAGR analysis, Dongjak-gu is expected to supply the most hydrogen vehicles in the future, and Seocho-gu currently has the most hydrogen vehicles, so it is likely that additional hydrogen charging infrastructure will be needed between Dongjak-gu and Seocho-gu.

Anti-inflammatory Effects of Canavaliae Semen(Canavalia gladiate) Extracts in a Systemic Anaphylaxis Food Allergy Mouse Model (전신과민성 식품 알레르기 마우스 모델에서의 도두(刀豆) 추출물의 항염 효과)

  • Yang, Won-Kyung;Park, Yang-Chun;Kim, Han-Young;Kim, Geun-Hui;Noh, Seong-Soo;Kim, Seung-Hyung
    • The Korea Journal of Herbology
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • Objective : An allergy to peanuts is a major cause of fatal food-induced anaphylaxis, with food allergies becoming an increasingly important health research issue. Food allergy as clinical entity has been recongnized for many years, although there is yet no general concord as to the incidence of this symptom.1) Methods : This study was undertaken to verify the effect of seeds of Canavalia gladiata (Jacq.) DC. extract (CGE) on the inhibition of allergic reactions using a cholera toxin and peanut extract-immunized food allergy mouse model. We determine whether the changes in rectal temperature were related to energy consumption owing to heat production in the body. Mast cell distribution and degranulation in the dermis and epidermis were observed with an optical microscope. Subsequently, Ara h1 levels in serum and interleukin (IL)-4, IL-10, and $IFN-{\gamma}$ levels in cultured supernatants of splenocytes were measured. Results : CGE treatment significantly attenuated the secretion of the Ara h1 antibody in serum and splenocytes. Ara h 1 was undetected in the cholera toxin and peanut extract-immunized food allergy mouse model. Improvement in ear tissue inflammation symptoms was the CGE experimental group. In the control group and peanut extract control group, the expression of mast cells was higher, whereas that in the CGE experimental group was significantly lower. Conclusion : CGE causes suppression in a food allergy mouse model via the inhibition of Ara h1 secretion, and might be useful for developing functional health foods.