• Title/Summary/Keyword: Energy demand-supply

Search Result 521, Processing Time 0.034 seconds

A study on solar radiation prediction using medium-range weather forecasts (중기예보를 이용한 태양광 일사량 예측 연구)

  • Sujin Park;Hyojeoung Kim;Sahm Kim
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.1
    • /
    • pp.49-62
    • /
    • 2023
  • Solar energy, which is rapidly increasing in proportion, is being continuously developed and invested. As the installation of new and renewable energy policy green new deal and home solar panels increases, the supply of solar energy in Korea is gradually expanding, and research on accurate demand prediction of power generation is actively underway. In addition, the importance of solar radiation prediction was identified in that solar radiation prediction is acting as a factor that most influences power generation demand prediction. In addition, this study can confirm the biggest difference in that it attempted to predict solar radiation using medium-term forecast weather data not used in previous studies. In this paper, we combined the multi-linear regression model, KNN, random fores, and SVR model and the clustering technique, K-means, to predict solar radiation by hour, by calculating the probability density function for each cluster. Before using medium-term forecast data, mean absolute error (MAE) and root mean squared error (RMSE) were used as indicators to compare model prediction results. The data were converted into daily data according to the medium-term forecast data format from March 1, 2017 to February 28, 2022. As a result of comparing the predictive performance of the model, the method showed the best performance by predicting daily solar radiation with random forest, classifying dates with similar climate factors, and calculating the probability density function of solar radiation by cluster. In addition, when the prediction results were checked after fitting the model to the medium-term forecast data using this methodology, it was confirmed that the prediction error increased by date. This seems to be due to a prediction error in the mid-term forecast weather data. In future studies, among the weather factors that can be used in the mid-term forecast data, studies that add exogenous variables such as precipitation or apply time series clustering techniques should be conducted.

The Demand Analysis of Water Purification of Groundwater for the Horticultural Water Supply (시설원예 용수 공급을 위한 지하수 정수 요구도 분석)

  • Lee, Taeseok;Son, Jinkwan;Jin, Yujeong;Lee, Donggwan;Jang, Jaekyung;Paek, Yee;Lim, Ryugap
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.510-523
    • /
    • 2020
  • This study analyzed groundwater quality in hydroponic cultivation facilities. Through this study, the possibility of groundwater use was evaluated according to the quality of the groundwater for hydroponic cultivation facilities. Good groundwater quality, on average, is pH 6.61, EC 0.27 dS/m, NO3-N 7.64 mg/L, NH4+-N 0.80 mg/L, PO4-P 0.09 mg/L, K+ 6.26 mg/L, Ca2+ 18.57 mg/L, Mg2+ 4.38 mg/L, Na+ 20.85 mg/L, etc. All of these satisfy the water quality standard for raw water in nutrient cultivation. But in the case of farmers experiencing problems with groundwater quality, most of the items exceeded the water quality standard. As a result of the analysis, it was judged that purifying groundwater of unsuitable quality for crop cultivation, and using it as raw water, was effective in terms of water quality and soil purification. If an agricultural water purification system is constructed based on the results of this study, it is judged that the design will be easy because the items to be treated can be estimated. If a purification system is established, it can use groundwater directly in the facility and for horticulture. These study results will be available for use in sustainable agriculture and environments.

A Management Plan of Wastewater Sludge to Reduce the Exposure of Microplastics to the Ecosystem (미세플라스틱의 환경노출을 최소화하기 위한 하·폐수 슬러지 관리방안)

  • An, Junyeong;Lee, Byung Kwon;Jeon, Byong-Hun;Ji, Min-Kyu
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Due to the negative impacts of microplastics (MPs) on the ecosystem, the investigation of its occurrence and its treatment from sewage and wastewater treatment plants (WWTPs) have received a lot of attention in the recent years. Most MPs are precipitated and removed with the sludge during the treatment process. Proper sludge management is immensely necessary to avoid MP exposure in the environment. However, the domestic research on this aspect is limited. This study reviews appropriate sludge management approaches to decrease environmental MP exposure. This can be achieved through investigating sludge generation and treatment, regulation laws and government policy trends with an emphasis on WWTPs. The ratio of sludge in sewage treatment plants has been observed to be highest in recycling followed by incineration and landfills. Recycling is the highest in fuel followed by construction materials and composting. For WWTPs, the highest ratio is in recycling followed by fuel and landfills, and recycling is confirmed in the following order: incineration > after composting > after solidification > earthworm breeding. Treatment approaches that can increase the exposure of MPs to the ecosystem are considered to be used in landfills and agricultural fields. However, this method is not appropriate given the insufficient capacity of domestic landfills and the sufficient supply of existing chemical and animal manure fertilizers. Instead, it would be rational in terms of environmental preservation to expand the use of fuel and energy in connection with the new and renewable energy policy, and to actively seek the use of sub-materials for construction materials. In order to secure the basic data for the effectiveness of future planning and revision of related laws, it is required to perform an in-depth investigation of the sludge supply and demand status along with the environmental and economic effects.

Investigation of PWR Spent Fuels for the Design of a Deep Geological Repository (심층처분시스템 설계를 위한 경수로 사용후핵연료 현황 분석)

  • Cho, Dong-Keun;Kim, Jungwoo;Kim, In-Young;Lee, Jong-Youl
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.339-346
    • /
    • 2019
  • Based on the $8^{th}$ Basic Plan for Electric Power Demand and Supply, an estimation has been made for inventories and characteristics of spent fuel (SF) to be generated from existing and planned nuclear power plants. The characteristics under consideration in this study are dimensions, fuel array, $^{235}U$ enrichment, discharge burnup, and cooling time for each fuel assembly. These are essentially needed for designing a disposal facility for SFs. It appears that the anticipated quantity by the end of 2082 is about 62,500 assemblies for PWR SFs. The inventories of Westinghouse-type and Korean-type SFs were revealed to be 60% and 40%, respectively as of the end of 2018. The proportion of SFs with initial $^{235}U$ enrichment below 4.5 weight percent (wt%) was shown to be approximately 90% in total as of the end of 2018. As of 2077, more than 97% of SFs generated from Westinghouse-type nuclear reactors were shown to have cooling time of over 50 years. As of 2125, more than 98% of SFs generated from Korean-type nuclear reactors were shown to have cooling time of over 45 years. Based on these results, for the efficient design of a disposal system, it is reasonable to adopt two types of reference spent fuel. SF of KSFA with $^{235}U$ enrichment of 4.5 wt%, discharge burnup of 55 GWd/tU, and cooling time of 50 years was determined as reference fuel for Westinghouse-type SFs; SF of PLUS7 with $^{235}U$ enrichment of 4.5 wt%, discharge burnup of 55 GWd/tU, and cooling time of 45 years was determined as reference fuel for Korean-type SFs.

Analysis of Determinants of Carbon Emissions Considering the Electricity Trade Situation of Connected Countries and the Introduction of the Carbon Emission Trading System in Europe (유럽 내 탄소배출권거래제 도입에 따른 연결계통국가들의 전력교역 상황을 고려한 탄소배출량 결정요인분석)

  • Yoon, Kyungsoo;Hong, Won Jun
    • Environmental and Resource Economics Review
    • /
    • v.31 no.2
    • /
    • pp.165-204
    • /
    • 2022
  • This study organized data from 2000 to 2014 for 20 grid-connected countries in Europe and analyzed the determinants of carbon emissions through the panel GLS method considering the problem of heteroscedasticity and autocorrelation. At the same time, the effect of introducing ETS was considered by dividing the sample period as of 2005 when the European emission trading system was introduced. Carbon emissions from individual countries were used as dependent variables, and proportion of generation by each source, power self-sufficiency ratio of neighboring countries, power production from resource-holding countries, concentration of power sources, total energy consumption per capita in the industrial sector, tax of electricity, net electricity export per capita, and size of national territory per capita. According to the estimation results, the proportion of nuclear power and renewable energy generation, concentration of power sources, and size of the national territory area per capita had a negative (-) effect on carbon emissions both before and after 2005. On the other hand, the proportion of coal power generation, the power supply and demand rate of neighboring countries, the power production of resource-holding countries, and the total energy consumption per capita in the industrial sector were found to have a positive (+) effect on carbon emissions. In addition, the proportion of gas generation had a negative (-) effect on carbon emissions, and tax of electricity were found to have a positive (+) effect. However, all of these were only significant before 2005. It was found that net electricity export per capita had a negative (-) effect on carbon emissions only after 2005. The results of this study suggest macroscopic strategies to reduce carbon emissions to green growth, suggesting mid- to long-term power mix optimization measures considering the electricity trade market and their role.

A Study on the Deterioration Process of 22kV Power Cables in Operation (운전 중인 상태에 있는 22kV 전송선로 케이블의 열화 과정해석에 대한 연구)

  • Lee, Kwan-Woo;Um, Kee-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.127-133
    • /
    • 2013
  • As an essential part of current industrial society, electric power energy is contantaly increasing in pace with the development of science and technology. In order to meet the demand of electric power, power facilities which take care of the higher voltage and bigger capacity is required. To produce and supply electric power on a sound basis the electric facilities should operate with reliability. To prevent disasters in advance, the high quality facilities should be manufactured, and a constant management should be done. When the power facilities cause accidents, the result is huge national deficits. Since the power facilities play a pivotal role in the key industry of national infrastructures of they should operate for a long time in maintaining a stable state, and the accidents can be prevented in advance. The lifetime of a power cable is considered to be 30 years at the time of manufacture, but in real fields, accidents of cable occur 8-12 years from the start of operation, resulting in a heavy loss of properties. In this paper, we will show that we have found out the cause and process of the deterioration of 22kV cable systems in operation. The result is that the process of deterioration does not follow the Weibull distribution only ; but rather, after the heat deterioration the Weibull distributed deterioration comes, then the cable is destroyed due to the partial discharge resulting from the Weibull distributed deterioration.

Experimental Results of New Ion Source for Performance Test

  • Kim, Tae-Seong;Jeong, Seung-Ho;Jang, Du-Hui;Lee, Gwang-Won;In, Sang-Yeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.269-269
    • /
    • 2012
  • A new ion source has been designed, fabricated, and installed at the NBTS (Neutral Beam Test Stand) at the KAERI (Korea Atomic Energy Research Institute) site. The goalis to provide a 100 keV, 2MW deuterium neutral beam injection as an auxiliary heating of KSTAR (Korea Super Tokamak Advanced Research). To cope with power demand, an ion current of 50 A is required considering the beam power loss and neutralization efficiency. The new ion source consists of a magnetic cusp bucket plasma generator and a set of tetrode accelerators with circular copper apertures. The plasma generator for the new ion source has the same design concept as the modified JAEA multi-cusp plasma generator for the KSTAR prototype ion source. The dimensions of the plasma generator are a cross section of $59{\times}25cm^2$ with a 32.5 cm depth. The anode has azimuthal arrays of Nd-Fe permanent magnets (3.4 kG at surface) in the bucket and an electron dump, which makes 9 cusp lines including the electron dump. The discharge properties were investigated preliminarily to enhance the efficiency of the beam extraction. The discharge of the new ion source was mainly controlled by a constant power mode of operation. The discharge of the plasma generator was initiated by the support of primary electrons emitted from the cathode, consisting of 12 tungsten filaments with a hair-pin type (diameter = 2.0 mm). The arc discharge of the new ion source was achieved easily up to an arc power of 80 kW (80 V/1000 A) with hydrogen gas. The 80 kW capacity seems sufficient for the arc power supply to attain the goal of arc efficiency (beam extracted current/discharge input power = 0.8 A/kW). The accelerator of the new ion source consists of four grids: plasma grid (G1), gradient grid (G2), suppressor grid (G3), and ground grid (G4). Each grid has 280 EA circular apertures. The performance tests of the new ion source accelerator were also finished including accelerator conditioning. A hydrogen ion beam was successfully extracted up to 100 keV /60 A. The optimum perveance is defined where the beam divergence is at a minimum was also investigated experimentally. The optimum hydrogen beam perveance is over $2.3{\mu}P$ at 60 keV, and the beam divergence angle is below $1.0^{\circ}$. Thus, the new ion source is expected to be capable of extracting more than a 5 MW deuterium ion beam power at 100 keV. This ion source can deliver ~2 MW of neutral beam power to KSTAR tokamak plasma for the 2012 campaign.

  • PDF

Impacts of Low-priced of Industrial Electricity and Loose Environment Regulations on Investment Incentives of Inward Foreign Direct Investment of the Manufacturing Industries in Korea (외국계 제조업체 투자유인으로서의 저렴한 전기요금과 느슨한 환경규제 영향력)

  • Kim, Jung A;Lee, Hee Yeon
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.231-248
    • /
    • 2014
  • The role of the foreign direct investment is very crucial for the regional economic growth nowadays. The inward FDI in Korea has been increased since the Act of foreigner investment promotion in 1998. The municipal and national government have designated the special industrial zones and supported the diverse incentives for the foreign investment companies. The service sector had a large share of inward FDI. However, manufacturing sector overtook the service sector as the largest FDI in 2009. This study focuses on the greenfield manufacturing FDI, which was established from 1999 to 2012 in Korea. In order to find out the impacts of low-priced industrial electricity and loose environmental regulations on choosing Korea, this paper did in-depth interviews with MOTIE, Korea industrial complex, Korea Trade-Investment Promotion Agency, some FDI companies. Investment incentives such as low price of domestic industrial electricity strongly affect why manufacturing FDI companies choose Korea to invest. The Korean government has also acknowledges that low-price policy can internationally compete to attract FDI. There is a possibility that FDI energy-guzzling industrial companies may choose for Korea to use the low-priced electricity, raising the issue of supply-demand of electricity of Korea in the future.

  • PDF

Effect of Seeds Treatment on Germinablity of Tetragonia Tetragonides Seeds (번행초의 대량번식을 위한 종자처리가 발아력에 미치는 영향)

  • Kang, Jum-Soon;Park, Eun-Ji;Kim, So-Hee;Heo, You;Park, Young-Hoon;Choi, Young-Whan;Son, Beung-Gu;Lim, Woo-Taik;Suh, Jeong-Min
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.771-780
    • /
    • 2014
  • Tetragonia tetragonides is a medicinal plant native to ocean sand soil of southern provinces and has significant effects on the prevention and curing of gastroenteric disorders. Despite of its popularity, supply of the plant has never met the level of demand because of the absence of an adequate culturing method. The present study, thereby, was conducted for classifying the plants with geographically different characteristics, studying growth habits, developing a new culturing method and establishing a large scale propagation system of selected superior individual plants. The study was also aimed for revealing optimum conditions for seed treatment, fertilization, and efficient culturing system and thereby, for utilizing the plant as a new income source for rural communities. The seed was elongated with size of 2.6 mm (width) ${\times}$ 1.8 mm (length). No difference in seed size was observed depending on different inhabitate. Each flower produced about 4.5~4.8 seeds. Germination rate was high for seeds matured for 40 days after fertilization, but deceased to 50% for seeds matured only for 20 or 30 days. Seed dormancy lasted 6 months and seed storage at humid $5^{\circ}C$ facilitated germination. Mechanical obstruct of seed germination was due to seed coat and removal of seed coat enhanced the germination rate. Optimum temp. for seed storage was $5^{\circ}C$, and high germination rate was maintained for 350 days. However, for stratification condition or at room temperature, germination was significantly reduced as storage time increased Optimum treatment of plant growth regulators was soaking in $GA_3$ 250 mg/L for 1 hr. The priming treatment with 50 mM $Ca(NO_3)_2$ at $20^{\circ}C$ for two days improved the seed germination with 10% compared to non-treated control. The treatment of 20% NaOCl for 3 hr. improved the seed germination rate up to 10% and 1 day ahead.

Analysis on Survey, Exploration and Development Policy and Technology of China : Focused on Shale Gas Resources (셰일가스 자원을 중심으로 한 중국의 에너지·광물자원 조사·탐사·개발 기술 정책분석)

  • Lee, Jae-Wook;Kim, Seong-Yong;Ahn, Eun-Young;Park, Jung-Kyu
    • Economic and Environmental Geology
    • /
    • v.47 no.3
    • /
    • pp.291-302
    • /
    • 2014
  • The Chinese government and its agencies were trying in order to solve the unstability of resource supply and demand. Ministry of Land and Resources of China(MLR) carried out a lot of national-level policy and planning for estimating the domestic mineral and energy resources potential and recoverable reserves, as the Chinese land and resources survey plan(1999~2010), the Chinese mineral resource survey and exploration plan(2008~2020), announcement for shale gas industry policies of China, the Chinese shale gas resources evaluation and selection project for its development priority areas(2012), and the plan for Chinese shale gas development(2011~2015). The two large sedimentary basins of Chinese shale gas reserves are Sichuan and Tarim basins with excellent potential, accounting for majority of the estimated national reserves. Recoverable gas-bearing shale of China was surveyed to be widespread. The volume of recoverable shale gas reservoirs in China has been estimated to be around 31 trillion cubic meters(1,115 trillion cubic feet). China is one of only three countries with the US and Canada to produce shale gas in commercial quantities. China is concentrating on technology development to enhance commercial production of shale gas, and on survey and exploration activities to increase its recoverable reserves. The trends related to shale gas development and R&D activities in China to respond to changes in international oil market should be actively monitored based on analysis of Chinese policies and technology.